
RADC-TR-89-376, Vol I (of twvo)
Final Technical Report
February 1990

AD-A220 772

SPECIFICATIONNERIFICATION OF
TEMPORAL PROP2RTIES FOR
DISTRIBUTED SYSTEMS: ISSUES AND
APPROACHES

Odyssey Research Associates, Inc.

Adward A. Schneider, D.G. Weber, Tanja de Groot

OTICE LECTE
APR24 1990

APPROVED FCO PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

h 04 9:. 144



This report has been reviewed by the RDC Public Affairs Division (PAi
and is releasable to the National Technical 'nformation Ser*,ices (NTIS) Ar
NTIS it will be releasable to the general public, including foreign naticn6.

ALDC-TR-89-376, Vol I (of two) has been reviewed and is approved
for publication.

AP PROV E: /,,)z

EMILIE J. SIARKIEWICZ
Project Engineer

RAY-MOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THlE CON124ANDER;

IGOR G. PLONISCIE
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your

organization, please notify RADC (COTD ) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do n-ot return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.



UNCLASSIFIED
SECUITY CLASSIFICATION OF THIS PAG

REPORT DOCUMENTATION PAGE &0"1

I&. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release;

2b. DECLASSIFICATION IDOWNGRADING SCHEDULE distribution unlimited.
N/A ____________________

£.PPqWRMIN ONGAWIATINON REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

NIA RADC-TR-89-376,. Vol I (of tvo)
Be. NAME Of PERFORMING ORGANIZATION L6b. OFFICE SYMBOL. 7a. NAME OF MONITORING ORGANIZATION

Inc. Rome Air Development Center (COTD)
6L. ADDRESS (City. Statf. and ZIPCod*) 7b. ADDRESS (City, State, and ZIP Code)

Ithaca NY 14850-1313 Griffiss AFB NY 13441-5700
r& NAME OF FUNDING ispowSORING Sb6. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION PNL'MSER

Rome Air Development Center COTD F30602-87-D-0092, Task 0005
St.. ADDRESS (City, State, and ZIP Code) 10. SOUPCE OF FUNDING NUMBERS

PROG RAM PROJECT ITASK WACOR UN
ELEMENT NO. NO. NO ACESIN O

Griffiss AFB NY 13441-5700 35167G 1069 QB 05
11. TITLE (kkdude Secw Oniflcation)
SPECIFICATION/VERIFICATION OF TEMPORAL PROPERTIES FOR DISTRIBUTED SYSTEMS:

17.TYIO OAT CO 3bS 18. UBECTE RM (Cntnu DAT OFv~ REOR (Yewr afnd iet)f 1y S.o PAGEmCOUN

FED GROUP suB-GROUP Computer Security Temporal Properties
120 Distributed System Fault Tolerance

S eeification/Verification Adaptive Policies
19. ANSTRACT (ConInu, Mn r~eif necemay and identiy & ok* nmbo
This report identifies problems, models and solutions in the area of specification and
verification of temporal properties for secure distributed systems. The temporal prop-
erties studied are security, progress, determinism, and real-time requirements. Also
included is work on the specification of fault tolerance and adaptive security policies.
This effort is afirst look~ at these issues. '- 4;"

;IY / - .'C4
In a companion volume, The Gypsy Verification Environment is evaluated ith regard to
its ability to handle the temporal properties discussed here.

20. OISTRIoUTIOF4/AVAILAmNLITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
U UNCLASSIIBmonAmTo C3 SAME AS RPT. oTIC USEn UNCLASIFIED

28a. =IFRSPNH 1*0AL. 22b tLIPE t Area Code) 12c. OFFIC SYMBOL
-I*J arleviez 35 330-2-156 RADC (COTD)

00 form t473, )UN 0 11'WviosWUedifmembial w SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



Accession ForNTIS IRA&I

DTIC TAB 3
Unannounced 3
Justifioation

By
Distribution/
Availability Codes

l~vadl and/oi-

Contents Dist AvaiL

0 Introduction 1

0.1 Distributed System Model .................................. 2

0.2 Remainder of the Report ..... ........ ................... 3

0.2.1 Live Queue ....................................... 4

0.2.2 File Server ...................................... 5

1 Temporal Properties 7

1.1 Security ............................................ 7

1.1.1 Restrictiveness ................................... 9

1.1.2 Synchronous Communication .......................... 10

1.1.3 File System ...................................... 11

1.2 Adaptive Security Policies .................................. 13

1.2.1 Security Policies .................................... 13

1.2.2 Situations for Security Policy Modifications ................. 15

1.2.3 Changing Policies .................................. 16

1.3 Progress ....................................... 17

1.3.1 Liveness ........................................ 17

1.3.2 Specifying Progress Properties ......................... 19

1.4 Nondeterminism ....................................... 20

1.4.1 Synchronization ................................... 20

1.4.2 Race Conditions ................................... 21

- I - . .m l m ~ mm m I • m m ' m m m-k



1.4.3 Verification ................................ 21

1.5 Fault Tolerance Requrement u .......................... 22

1.5.1 Introduction ...... ............................... 22

1.5.2 Fault-tolerance techniques ............................. 25

1.5.3 Design Issues ..................................... 38

1.6 Real-Time Requirements .................................. 42

1.6.1 Time ........................................... 43

1.6.2 Specification and Verification ........................... 44

2 Formalisms 45

2.1 Temport' Logic ......................................... 45

2.1.1 The Logic ....................................... 45

2.1.2 Program Models ................................... 46

2.1.3 Temporal Logic Applied to Program Properties ............... 47

2.2 State Transition Model .................................... 50

2.2.1 The Model ...................................... 50

2.2.2 Formal Specifications ................................ 53

2.2.3 Temporal Logic .................................... 54

2.3 Timed CSP Processes .................................... 55

3 Specification and Verification of Fault-Tolerance 59

3.1 Introduction ........................................... 59

3.1.1 Motivation ...... ................................ 59

3.1.2 Fault Scenarios and MTTF ........................... 61

3.2 Formal Specification of Fault-Tolerance ......................... 62

3.2.1 Specifying Faults ................................... 62

3.2.2 Non-Interference ................................... 63

3.2.3 Analogy with Multi-Level Security ....................... 67

3.2.4 Graceful Degradation ...... .......................... 71

ii



3.3 Verification of Fault-Tolerance ............................... 77

3.3.1 Modeling Fault Tolerance in MUSE ...................... 78

3.3.2 Example ........................................ 81

4 Conclusion 89

4.1 Security ............................................. 90

4.2 Secure Distributed System Developer's Workbench ................. 90

A Notation 93

A.1 Sequences ............................................ 93

A.2 CSP ........................................... 93

Bibliography 95

iii



Chapter 0

Introduction

This study, prepared by Odyssey Research Associates, covers tasks one, three, and seven
of a project by Sytek, Inc., ORA, RCA, and Computer Corporation of America that was
originally intended to investigate, design, develop, and demonstrate tools to aid in the
specification and verification of the security and functionality of distributed systems. It
identifies problems and develops models and solutions in the area of specification of temporal
properties of secure distributed systems. Included is work on the specification of fault
tolerance and on adaptive security policies.

The temporal properties that have been studied for this report are

security. It should be possible to prove that a system being built using such tools is secure.
Also, it must be possible for the security policies used to adapt to changing conditions
over the lifecycle of a system.

progress. Properties to be proved about a system that are of the form "nothing bad can
happen" are referred to as safety properties. However, a system that does nothing
meets such properties. It is therefore also necessary to have livenew properties stating
that eventually progress will be made and something good will happen.

determinism. Nondeterminism occurs in distributed systems due to the unpredictability
of process speeds relative to each other. Processes are synchronized to control the
nondeterminism.

real-time requirements. The distributed systems to be built with the tools will fre-
quently have timing constraints that affect the scheduling of the processors and the
allocation of other resources.

fault-tolerance requirements. Making a system fault-tolerant requires replication in ei-
ther space or time. The tools must therefore allow for the specification of how the
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system parts should be replicated and agreement reached and of when and how restart
should be applied. The tools must also provide for the implementation of these re-
quirements.

Specifying and verifying probabilistic algorithms [40] has not been studied.

0.1 Distributed System Model

The model of a distributed system that will be used in this report is a collection of objects
that interact only by passing messages. The only state global to two or more objects is the
communication channels that connect them. Every piece of data must be contained in one
of the objects and cannot be directly read from another. This model fits very well with
a multicomputer, in which there is no memory shared between the nodes, and the objects
can be distributed arbitrarily among the nodes. However, it can also be used when objects
share a node and some global memory. < ) 6-I

The activity of an object, known as a process, is a sequence of actions consisting of
a mixture of communications and internal computing. From outside its object, the only
behavior of a process that can be observed is the sequence of input and output commu-
nications that it participates in. Internal actions can only be inferred when a change in
behavior occurs.

There are two different styles of communication in distributed systems: synchronous
and asynchronous. In synchronous communication, the sender of a message is delayed until
the message is received. Thus, a channel between two processes has at most one message in
it and no additional buffering is required. Also, when the sender proceeds to its next action,
it knows that the recipient has received the message. In asynchronous communication, the
sender does not wait for the receiver. The channel between processes buffers the messages
that have not been received. Characteristics of such a channel include the amount of
buffering provided and the order in which waiting messages are delivered.

Synchronous communication will be assumed in this report. Synchronous communica-
tion is used by CSP[23], CCS[35], and Ada. Asynchronous communication can be easily
simulated by explicitly creating buffer objects that synchronously accept messages from the
sender or deliver messages to the receiver, but which allow the sender to proceed indepen-
dently of the receiver. Decisions such as buffer size and the order in which messages are
delivered are then part of the buffer, rather than part of the model. Also, the collection of
undelivered messages is represented in the state of the buffer.

A prmce will be described as a set of traces, where each trace is a possible behavior of
the process as observed over a finite period of time. Thus, a truce is a finite sequence of input
and output actions. A trace may also be thought of as determining a aste representing
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the future behaviors that the process can exhibit. Initially, no actions have occurred so the
empty sequence is a legal trace. If (a, b, c) is a valid trace, then (a) and (a, b) would have
been observed at earlier times and must therefore be legal (traces are prefix closed) (23].
Formally, a process is an Event System consisting of:

* E, the set of events or actions, which is partitioned into I. (the set of inputs) and 0

(the set of outputs).

e T C E*, the set of finite traces such that

1. ()ET
2. st E T 0 s E T

Nondeterministic behavior can be explained either by adding new internal events not con-
tained in I or 0 [35) or by using failure semantics [7,9].

The behavior of a system composed of one or more processes is also represented as a
trace. The system trace is an interleaving of its constituent process traces, in which the
synchronous communication between two of the processes is treated as a single event. An
event occurs in the system trace iff it occurs in at least one of the process traces. The order
of two events in a process trace is maintained in the system trace.

0.2 Remainder of the Report

The next chapter will discuss the temporal properties in the areas of security, adaptive
policies, liveness (progress), determinism, real-time requirements, and fault-tolerance re-
quirements. The following chapter then presents several formalisms that can be used to
specify these temporal properties. These include temporal logic, a state-transition model,
and timed CSP. Throughout these two chapters, the concepts will be illustrated using a
live queue example and a file server example. The final chapter presents techniques of
formal verification of fault tolerance that are one means for gaining greater assurance of
the correctness of software. Precise specifications corresponding to the intuitive notions
of "fault tolerance" and of "graceful degradation" are formulated. An analogy is con-
structed between these fault-tolerance specifications and a particular class of specifications
for computer security. On the basis of this analogy, it is argued that formal verification
of fault-tolerance will face some of the same problems, and benefit from some of the same
solutions, as verification of security. Verification tools designed for one domain may be
applicable in the other. The notation used for sequences and the CSP language used for
specifications is given in the appendix.

In a companion volume, the Gypsy Verification Environment is evaluated with regard
to its ability to handle the temporal properties discussed here.
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0.2.1 Live Queue

Consider the queuer process defined in figure 0.1, which acts like a first-in, first-out buffer
for one or more producer processes and one or more consumer processes. The queuer has
two operations, enq and deq, which respectively enqueue and dequeue an item. If the queue
is empty, the next operation is necessarily enq. The queuer can hold only finitely many
items; if the queue is full, the next operation is necessarily deq.

The operations in figure 0.1 are represented as CSP channels; enq is an input channel
and deq is an output channel. The events are enq?x (assign to variable x the next value
from enq) and deq!x (output the value of x on deq). The first subscript of Q is the number
of items in the queue and is easily shown to be the number of items input (enqueued) minus
the number of items output (dequeued). The second subscript is a sequence representing
the items stored, in order of arrival. The maximum number of items that can be stored is
given by max, which is required to be greater than zero. The notation (y)^q^(x} represents
the sequence with first element y, last element x, and the (possibly empty) sequence q in
the middle. The empty sequence is represented as (). Process e -+ P first participates
in event e and then behaves like process P. Process P 0 Q behaves either like process P
or like process Q. Thus, Q -{(,) either inputs y from channel enq and then behaves like
Qn+l,(y,)q'(x) or outputs x to channel deq and then behaves like Qn.-i,q.

The producer outputs an item to the queuer after doing some number of internal actions.
Similarly the consumer inputs an item after doing some number of its own internal actions.
The external behavior of these processes is defined by:

producer = lp. enq!x -- p for varying x
consumer = pp. deq?x -- p

A system composed of one producer, one consumer, and a queuer executing concurrently
is:

queuer = Qoo
Qo,o = enq?x -
Q,,A-(X) = enq?y n

adeq!x -+ - for 0 < n < max
Qm,q-(x) -deq!x - Qma-I,q

Figure 0.1: queuer process

4



system - (producer jj queuer 11 consumer) \ {enq.x, deq.x}

The traces for queuer are sequences of enq and deq events in which the difference between
the number of enq and the number of deq events is between 0 and max and the sequence of
values dequeued is an initial subsequence of the values enqueued. The only trace of system
is the empty sequence, since all communications axe internal and have been hidden.

This simple example, caled the LIVEQ, provides a backdrop for discussing properties
related to progress. For instance, by modifying the behavior of the constituent processes,
the system may become subject to deadlock. Chapter 1 uses this example and modifications
to illustrate progress properties. Later sections in this document describe other ways of
specifying this example and related properties.

0.2.2 File Server

Consider the file system defined in figure 0.2, in which files may be created, read, and
deleted. In order to avoid dealing with the problem of handling name conflicts (trying to
create a file with a name already in use), the create operation returns a unique file name.
The subscripts to FS represent the state of the file system: n is the number of files that
have been created and f(n) is either the value of the file named by n or else error. The
notation gin : si represents the function that is the same as f, except that the value at a is
s. Note that FSn4 is defined recursively, with p representing the recursive call.

The file system is an object that receives inputs from channel in (input event in.x is
abbreviated ?x) and sends responses over a channel c passed as a parameter in the request.
The input events recognized by the file system are ?(create, s, c), which causes both a value
to be output and a state change, ?(read, n, c), which causes a value to be output but leaves
the state invariant, and ?(delete, n), which only causes the state to change. The output
events are the responses returned to the sender of a create or a read. An error message is
returned in response to a read if the file has not yet been created or if it has been deleted.

filesystem = FSo where Vn E N. fO(n) = error
FSf = pp. ?(create,s,c) -- ((c!n -- SKIP) I FSn+1,nA1)

a?(read, n', c) -- ((c!f(n') -- SKIP) Ip)
0 ?(delete, n') i FSa.,nW:eor1

Figure 0.2: File System
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A new process is created to handle each output by splitting the file system object.
This allows concurrency in handling requests and can be implemented by either sharing
a single processor or by using several processors to respond to requests. Initiation of the
processes occurs in the order in which requests arrive, but the completion time depends on
the amount of time required to output the value (this might depend on the length of the
file for a read) and the amount of processing time provided by the underlying scheduler.

A trace of the file system is a sequence of input and output events such that every
output event is preceded by a create or a read with which it can be paired. Thus, there are
at least as many create and read events as there are output events. The value contained in
an output event is uniquely determined by the corresponding input event and the sequence
of input events in the trace prior to the corresponding input event.
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Chapter 1

Temporal Properties

1.1 Security

Security for a computer system takes many forms. Physical security prevents damage to or
theft of computer equipment. Encryption can be used to prevent the theft of information
through wiretaps. User identifiers and passwords prevent unauthorized users from entering
the system. Protection helps to maintain data integrity by controlling the way in which
objects in the system are manipulated. While all of these topics are important, formal
verification of them is not yet well understood. Therefore, this section will only deal with
information confidentiality - preventing users of the system from receiving information that
they are not authorized to receive. The Progress section deals with the related issue of
assured service.

In order to be able to talk about the security of a computer system, there must be a
precise description of the system, a method for controlling the flow of information in the
system (the security policy), and a definition of what it means for a system to be secure. A
computer system in this report is modeled as an object that interacts with its environment
by sending and receiving "messages". Examples of objects include network services and
individual processes, for instance the process which controls the operation of a file system.
A shared memory is an object that receives writes and read requests and sends responses
to the read requests. An object may be constructed from a collection of independent sub-
objects which communicate with each other by letting output messages from one component
become inputs to another. Examples include a file system connected to a buffer of pending
commands and two local networks joined together by a bridge. In this way, a large system
can be decomposed into smaller, more manageable parts. Objects will be specified using
CSP.

One form of security policy is diucretionary access control, in which either each object
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in the system has an access control list, specifying by whom and how it may be used, or
each user has a list of capabilities, specifying which objects it may access and how it may
access them. Discretionary access control is especially useful for systems in which access
to a particular piece of information is authorized for only a few users on a "need to know"
basis. With this method, the security policy is adapted to new conditions by changing the
access control lists or the capability lists stored in it. (These lists are themselves objects
that must be protected.)

Another form of security policy is mandatory access control or multievel security, in
which each user and each object is assigned a value from a set L of security eve that is
partially ordered by a dominates relation . A user's access to an object depends on how
the corresponding levels relate to each other under this relation. For example, a system
containing accounting information and information on weapon systems might have four
security levels: N (neither), A (accounting), W (weapon systems), and B (both). Users at
levels A and B can access accounting information and users at levels W and B can access
weapon systems information. Thus, a user at level N can access fewer things than any other
level user (N is dominated by all levels), while a user at level B can access more things than
any other level user (b dominates every level). However, there are some things that a user
at level A can access that a user at level W cannot and there are other things that a user
at level W can access that a user at level A cannot, so neither A nor W dominates the
other. A formal definition of security in a multilevel security model in terms of the flow
of information will be given in section 1.1.1. Mandatory access control is especially useful
for systems in which a new user or information is frequently added and for which access
authorization does not need to be established on a case-by-case basis. Only mandatory
control will be considered in the remainder of this report.

The Event System model is extended to a Rated Event System (RES) (59]

(E, T, 1,0, L, lvl)

consisting of a set E of events with disjoint subsets I (inputs) and 0 (outputs), a set T9E*
of traces, a partially ordered set L, and a mapping lvl : IUO--L that associates each input
or output event with a security level.

The most commonly-used class of security policies was defined by Bell and LaPadula [3].
A Bell-LaPadula policy divides the system into active subjects and passive objects and
assigns a security level to each. Information is prevented from flowing from a subject
through an object to a lower level subject by restricting how the subjects may access the
objects. The basic rules are that a subject may only read objects that they dominate and
write to objects that dominate them. A formal definition is presented in [3]. These policies
are sometimes overly restrictive, in that the security level for some data items may be forced
to too high a level, and also they have no rules to prevent information from flowing through
covert channels, such as the security control mechanism itself.
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1.1.1 Restrictiveness

In an office "system" consisting of people and actual files, the basic security policy is: only
people whose security level dominates that of a file are allowed access to that file. This
policy works for the office, but not for a computer: for instance, unauthorized users can
write programs which, when used to process high-level information, leak information to
the programmer via "Trojan horses" inserted in the code. The information leaks through
covert channels not subject to the security controls in the system. The cooperation of a
person cleared to see the information is not necessary. Also, the speed of the computer
makes the bandwidth of covert channels much greater than for human systems. Since all
the steps between the user and the information in question must be considered in order to
eliminate covert channels, the definition of security will necessarily be more complicated.

For a rated event system to be secure, high-level inputs must not be deducible from that
portion of the trace that can be observed [581. For each security level IEL, view, denotes
the set {eE I U 0 11 'lvl(e)}.

Nondeducibility.
Vt E T,l E L,7 E E*. t^7 E T *

37- ' E E*. t'^7' E T A 7y'Tviewl = i Tviewl A 7'1 (I - viewl) ()

This states that any future observable behavior of the system ('y I viewl) can be produced
without any nonobservable inputs (by -'). Note that decreasing the amount of information
available to an observer by increasing the level of an output (or deleting an output entirely)
preserves nondeducibility. Additional properties may also be required.

For a proof of security about a large system to be practical, the security property must
be composable in that it can be inferred from properties about its components and their
interactions. This is McCullough's "hookup-up" requirement (33]. The security of an entire
system should be a consequence of the security of its parts. While the nondeducibility
property is not composable, it can be strengthened to a restrictivenes. property that is
composable [34].

The definition of restrictiveness is based on a state-machine representation of objects,
rather than on traces. A state can be considered to be the set of event sequences that
extend the current trace to an element of T. For each extension 7 in state s, s., represents
the state that results after - occurs starting in s. For a system in which the sequence of
outputs is uniquely determined by the sequence of inputs, the state can be equated with
the trace of events that has occurred. However, for a nondeterministic system, each state
may also need to include a failure set and a divergence set [9]. This state-transition model
will be discussed further in the next chapter.

Restrictiveness. An object is restrictive if it is input total (inputs are never prohibited)
and for each 1 E L there is an equivalence relation -l on the set of states S such that

.. .... .. ....



0 i EIfnview,, s,s' ES.Sa =15W:* s) =1 8m
• Y, E I - viewis E S. s =1 s()

0 Ve E 0, s,s' E S. s(e) E SAs =1 s' *, 3 ' 0. s (e) =1s, A (e) T viewl = 7Tviewl

If such equivalence relations can be found for an object, the nondeducibility property holds.
Also, nondeducibility holds for an object composed of several subobjects for which restric-
tiveness holds.

Consider the infinite buffer ABuf<>. The subscript represents the state of the buffer

ABuf<> = ?x - ABuf<.:>
ABuf<h>-t.n = ?x - ABuf<h>-t-<x>

0 !h - ABufta

(initially the empty queue). The buffer can either receive a value from channel in and
append it to the end of the queue or else send the head element on channel out. ABuf
can be shown secure by defining s =1 s' iff s T viewl = s'T viewl.

iEI s =1 s' (s(i)) T viewl = (a T view)((i) T viewl) = (s' T viewl)^((i) T viewl) -

(s'(i))Tviewl (Since input events are always possible, Vs E S,i E I. s(i) E S.)

iEI-viewl (s^(i))TviewI = sTviewi

eEOnviewl (e)^s =1 s' = 3-y,s" E 0". s' = "y'(e)^s" AY Tviewl = 0 A s =1 s" (An output
can occur iff it is the first element in the buffer and (j/s), = s.)

eEO-viewl (e)^s =1 s' * s =1 s' A (e)Tviewi = 0Tviewl

A finite queue that throws away new inputs if the number of waiting messages equals
a limit is not secure because an unclassified message might be discarded after the buffer
has become full with secret messages. Thus, the secret messages can affect the sequence of
unclassified outputs. The -y that was used to prove the security of the infinite buffer will
not exist in this case. This problem can be corrected by placing bounds on the number of
messages of each security level.

1.1.2 Synchronous Communication

The input totality assumption does not hold for synchronous communication. When con-
sidering security, if inputs are not always immediately received, as they are in ABuf,
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synchronous communication must be represented as two events - the sending of the mes-
sage and the return of an acknowledgement for which the sender waits. The message may
arrive at any time, but will only be acknowledged when the receiver is ready for it.

For example, consider a system of three objects, one with secret information and the
other two without any. Each of the nonsecret objects initially try to either synchronously
send a message to the secret object or receive a message from the other nonsecret object.
If one is successful in sending a message to the secret object, it then sends a message to the
other nonsecret object. In this manner, the secret object has sent a bit of information by
choosing the nonsecret object it is willing to receive a message from. An acknowledgement
makes this information flow explicit.

The traces for ABuf pair an implicit input event with each explicit output (either a
request-for-output preceding the output or an acknowledgement following it). If the security
level of this implicit input is the same as the security level of the associated output, the
proof of security given above is still valid. The traces for the Live Queue should contain
an acknowledgement output immediately following each input and a request-for-output
input preceding each output. The nondeducibility property does not hold for the queuer
process. (Consider L=(s,u} where s>-u, l=u, max=l, t= (enq.?v,enq,!ack,enqu?v'), and
7= (deq.?rfo, deq.!v,enqu!ack).)

The need for an acknowledgement can be avoided by making the communication asyn-
chronous through the use of a secure buffer to hold the messages arriving at an object, as
defined in figure 1.1. The function ASynch modifies a process P so that messages sent to
it on channel in are buffered using ABuf. Process P communicates with the buffer over
channel int, which is hidden from other processes. Thus, messages sent over int are not
included in the traces of ASynch(P).

1.1.3 File System

To express security properties in programs, the CSP notation must be extended to label
input and output events with security levels. A message m communicated on channel c

ASynch(P) = (intout(ABuf<>) intin(P)) \ (int.x}
where intout(!x) - int!x intin(?x) = int?x

intout(x) - intin(x) = x otherwise.

Figure 1.1: Buffer to allow asynchronous input
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with security level I will be written as c.l.m. Internal events, such as communication over
local channels, do not need to be labeled. The notation cIl.m will be extended to represent
the process c!l.m --+ SKIP. Also, the notation 1<1' will be used for the dominates relation

In the file system, file names have been extended from being natural numbers to being
pairs consisting of a security level and a natural number (figure i.2). In this way, the
creation of a clasniied file cannot be detected through the file names. The fie-system state
contains a function N from the set of security levels to the natural numbers to handle
this extension. The output following a create or a read acknowledges those inputs. An
acknowledgement is returned after a delete.

The security policy for the file system will be expressed entirely in terms of security
levels. Nothing will prevent one user from deleting a file created by another user, provided
the level of the file is high enough. The restrictions imposed will be that the level of a file
must dominate that of the creator and the deleter ("write up") and be dominated by any
readers ("read down"). The read and the delete commands compare the security level
of the command against the security level of the file before performing the command. If
the file has a greater security level than a read, an error is returned. Since the decision to
return the error is based entirely on information contained in the message and not on the
state, the sender learns nothing about the file system.

The main process repeatedly reads a message from channel in and potentially spawns
a new process to output a value. The input events are the messages, which contain their
security level. The output events are the process creations, at the security level contained
in that process' output message, and the acknowledgements of delete messages.

To prove that the main process is secure, the state must be extended with the set of
pending output-process creations, P. For each pEP, let lev(p) be the security level of its
output. Define (N,f,P)=(N',f',P') if

# <l: 1. N(l') = N(1

filesystem = FSNfo where VI E L. NO(1) = 0 and Vm E L x N. fO(m) = error
FSN, = JAp. ?l.(create, s,c) -- (c!l.m I FSNPm+1J].m])

where n = N(1), m = (1 n)
o ?l.(read, m, c) --. ((c!l.f(m) ,4 m1 _5 1 . c!lerror) I p)o ?l.(delete, m) -4 (FSNJI.Uor] * 1 m1 * p)

Figure 1.2: Secure File System
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SVl' <,n N. f(l',n) =f'(',n)

S{p E P I lev(p)_ 1} ={p E P' I le(p) <l}

The input events create, read, and delete and the output event of creating an output-
process (thus removing it from the pending set) are easily seen to be restrictive for these
equivalence relations.

Fbr the output processes, there are no inputs and the only state is the value to be
output or empty. They are trivially restrictive. Since each process in the file system has
been shown to be restrictive, by the compositionality property the file system is secure.

1.2 Adaptive Security Policies

The security policy for an information system that will have a long lifetime, during which
it will evolve, and that must operate under a variety of conditions, such as normal opera-
tion, after the failure of a component, and during battle, cannot be static. As the system
evolves, new parts will be added while others axe removed or replaced. Also, data main-
tained by the system may change in importance or become obsolete, thus requiring less
protection. As conditions change, security may need to be sacrificed in favor of speed or
greater functionality. Therefore, adaptive security policies are necessary.

In order to describe how security policies can be adapted, a model of a security policy
must be given. This description of the basic model is followed by an analysis of how a
variety of security changes can be formulated in it. Finally, a proof technique is given that
can be used to detect leaks in security caused by a policy change. Throughout this section,
the low-water-mark problem will be used.

1.2.1 Security Policies

A security policy for an object specifies restrictions on the security levels of messages sent
to the object and assigns security levels to its output messages. It can be expressed as an
acceptance predicate for the input messages and a security level assignment rule for the
output messages. For example, in a Bell-LaPadula policy a write message is only accepted
if its level is dominated by the level of the object and all output messages are assigned the
object's level. The world outside the information system is also viewed as a set of objects,
each with an acceptance predicate to filter out inappropriate messages from the system,
and an assignment rule to classify messages sent to the system.

The acceptance predicate for an object specifies whether the security level of an input
message is acceptable. It depends on the type and the value of the message. The message
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is rejected by the system if the predicate is false. The acceptance predicate for the file
system example when given a read request input message is whether the level of the message
dominates that of the file to be read, as determined by the file's name. The input-totality
requirement for restrictiveness is satisfied by regarding an acceptance predicate as a separate
filter object; the main object is then regarded as accepting all inputs received from this
filter. Thus, any rejected inputs can be ignored when doing a proof of restrictiveness.

An alternate implementation of the file system is to store the security level of the file
with the file, rather than in its name. Each file is a subobject of the file system, with its
own acceptance predicate. The acceptance predicate for the file system would accept all
read requests and forward them to particular files, where they would then be rejected if
their level did not dominate that of the file. The file system could continue to reject create
messages that were not dominated by the proposed level of the file.

The assignment rule for output messages is a function of the state of the object. In the
file system, receiving a read request input with security level I sets the object's state so that
it responds at level 1.

Perceived Changes to Security Policies

The external view of an object is the sequence of outputs produced in response to a se-
quence of inputs (its trace). The security policy affects this view by rejecting some of the
inputs, preventing them from influencing the outputs produced, and by labeling the outputs
with security levels, controling which other objects will accept them. The security policy
therefore helps determine viewl.

An actual change in security policy for an object is the replacement of the acceptance
predicate and/or the assignment rule. For some levels 1, viewl will no longer be consistent
with the old policy and the change is perceived, while for other levels 1, viewl will continue
to be consistent with the old policy. In the file system example, a policy change might be
to prohibit any files with levels not dominated by some system maximum level m. This
can be accomplished by changing the acceptance predicate to reject any creates and reads
for files with a level not dominated by in. This policy change will not be perceived by any
level dominated by m. Likewise, a change in the system maximum will not be perceived
by any level that is dominated by both the old and the new maximum.

Since a policy change can be perceived by some of the observers of the object, the event
that triggers it must be included in the trace of the object. If the level of this event is not
dominated by the levels of all views that perceive the change, the change itself will leak
information about the occurrence of that event. Thus, a command changing the maximum
level of the files in the filesystem should have a level dominated by both the old and the
new level.
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Low-Water-Mark Problem

Consider the low-water-mark problem [11]. An object that stores a value accepts read,
write, and reset inputs. A read causes the object's value to be output at the security
level of the read, a write changes the value of the object, and a reset causes the value to
become undefined.

The acceptance predicate for an object permits only those reads that dominate the
current value, as determined by the last write or reset. Thus, a write or a reset changes
the acceptance predicate for future reads. Such a change can be perceived at any security
level that dominates either the level of the old value of the object or the level of the new
value. The object will be secure only if any of the levels at which a change can be perceived
dominates the security level of the change event (the write or the reset). Therefore, these
events can themselves only be accepted if their security level is dominated by the level of
the current value of the object. It is also necessary to require that the levels are linearly
ordered, since a write can affect the acceptance of future writes and resets.

1.2.2 Situations for Security Policy Modifications

There are several situations when a security policy might be modified. There can be multi-
user terminals connected to the information system. Each is considered an object with a
security policy. When no one is logged on at a terminal, the acceptance predicate will only
accept the very lowest security class messages. The assignment rule can assign either the
lowest class to all messages sent from the terminal to the system, under the assumption that
a user will not send anything of importance until she has identified herself, or the highest
class, because the user identifiers and passwords are extremely sensitive. After login is
complete, the security policy for the terminal can be set to reflect the authorization of the
user. During a session, the user might be allowed to change the assignment rule to reflect
different sensitivities of the data being sent to the system. After logout, the security policy
must revert back to the default.

The set of security levels L can be changed by adding or deleting levels. For instance,
a new use of the system may require adding a compartment. Adding a new level is ac-
complished by changing some of the assignment rules so that some outputs are assigned
the new level. Acceptance predicates can also be modified to accept or reject inputs at the
new level, although most acceptance predicates are expressed as a range of levels and will
automatically handle the new level, as determined by the dominates relation. Deleting a
level is also a change to the assignment rule such that no output is assigned the deleted
value. No change is required to the acceptance predicates in this case.

Reconfiguration consists of adding or removing objects. An object that is not part of
a system may be considered to have the absent security policy that rejects all inputs and
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labels all outputs so that no other object can see them (actually, the assignment rule can
be anything if the object produces no outputs in response to no inputs). Thus, removing
an object is equivalent to changing its security policy to absent and adding an object
is equivalent to changing its policy from absent. Also, the failure of a node can cause
the objects running on it to be removed and appear to have the absent security policy.
Detection of the absent policy can therefore be used to trigger recovery actions, possibly
including reconfiguration.

The sensitivity of information can change, requiring a change in the assignment of
security levels to the mesages carrying it. Such reclassification might occur during a
battle, when availability of information is more important than security, or according to
some time schedule. One method of handling reclassification is to pass messages through
a "trusted" object (that cannot be proved secure, but is considered secure anyway) that
modifies security levels if appropriate. This object could possibly be a human. Another
approach is to use "extended security levels" 160], instead of the simple levels used in this
report, that assign inputs a security level based on the current trace. Thus, the level of an
input can change as the trace of the object changes, perhaps permitting the level assigned
to outputs that are based on that input to decrease. Note, however, that reclassification
does not involve changing the security policy and will not be considered further here.

1.2.3 Changing Policies

The security provided by each potential policy can be evaluated individually and a deter-
mination made on the acceptability of any potential information flows. The concern here
is over the security of changing from one policy to another. There are two problems: the
change itself can be observed, thus causing a flow of information, and information input by
the object and saved in its state under one policy will be released by the new policy at too
low a level.

The first factor that must be considered is whether a single set of equivalence relations
can be used to prove the security of both the old and the new policies. If there is not, and
for some level I there are states that are equivalent under the relation for the old policy
but not for the new policy, the amount of information available at level 1 has expanded.
This is then an indication that information has been downgraded by the change in policies.
Similarly, for a new level 1 the test for downgrading of information to level 1 is whether
there are states that are not equivalent at level I under the relation for the new policy, but
are equivalent under the relation for the old policy at all levels dominated by 1.

In order to determine the level at which a change of security policies resulting from event
e can be detected, assume that the equivalence relations for the old and the new policies
are the same. The equivalence relation =1 is extended to state, acceptance predicate,
and assignment rule tuples as follows: (sAPAR) =1 (s',AP',AR') iff a =1 s', Vi, Ilvl(i).
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AP I = AP' I, and Vl'ls,o. AR (so) = 1' if AR' (so) = 1'. Informally, acceptance
predicates are equivalent at security level I if they behave the same on all inputs with levels
dominated by 1. Assignment rules are equivalent at security level I if they assign outputs
the same level, up to level I. The proof of security is modified such that, for any event that
changes the security policy, the tuples are used instead of just the state. Inputs that are
not accepted change neither the state nor the security policy and therefore can be ignored.
Also, if llvl(i) and (sAPAR) =1 (s',AP',AR'), either both AP and AP' accept i or neither
does. Thus, for equivalent states, a visible input that is accepted by one and potentially
causes a change in security policies will be accepted in the others.

In the low-water-mark problem, the acceptance predicate and the assignment rule are
modified by a write or a reset input. Concentrating on just the acceptance predicate and
the assignment rule, let i be a write or a reset that is accepted. For a level llvl(i), the
new acceptance predicate and assignment rule are defined without regard to the previous
tuple and therefore all tuples that result from I have equivalent acceptance predicates and
assignment rules. For a level llvl(i) and input i'___lvl(l), if i' is a read it would have been
rejected by any acceptance predicate that accepted lvl(i) and if I' is a write or a reset it
would have been accepted. After receiving i, i' will be accepted or rejected under exactly
the same conditions. Therefore, the acceptance predicates before and after receiving i will
be equivalent at level 1. Also, no outputs would have been assigned a level of I or less either
before or after i. Thus, the assignment rules before and after receiving i will be equivalent
at level 1.

1.3 Progress

The properties in this category have to do with showing that a process makes noticable
progress and is not stuck at one point. A process can fail to make progress because its
environment stops attempting to communicate with it, because it stops attempting to
communicate with its environment, or because resources that it needs are never allocated
to it. In general, showing that a system of processes continues to make progress is equivalent
to showing that it does not halt and is therefore undecidable. However, techniques exist
that can be applied to specific programs to show that progress properties hold.

1.3.1 Liveness

Liveness is the collection of properties that state that a system or a process will make
progress. A liveness property for the Live Queue is that each item enqueued will eventually
be dequeued. A liveness property for the File System is that each request to read a file will
eventually be replied to. Another is that each file that is created will eventually be read.

17



One reason why a liveness property might not be satisfied is that the service provided by
a process is not needed. For example, if the value of a file is not needed, it will not be read.
Also, a process that handles exceptional conditions will never run if no such conditions
occur. This failure to achieve liveness is not a system error, but rather is part of the normal
operation of the system. Liveness should be proved for such processes under the condition
that their service will be requested.

Starvation and Fairnes

A liveness property can fail to hold because a process is continually bypassed by the sched-
uler. In the File System, if the readers of a file are never scheduled the file will never be
read. Also, if the File System continually ignores a read request in favor of other input
messages, there will never be a reply to the read request. Such a process that is always
bypassed is said to starve.

A scheduler that does not allow starvation is called fair [15,20]. One formalization of
fairness states that a process which is infinitely often able to proceed will eventually do so.
For the file system, since there is no limit on the number of messages that can be processed,
fairness requires that every attempt to send a message to the file system will eventually
be accepted. Another aspect of fairness is that the file system will not continue to accept
inputs while postponing outputs arbitrarily long.

Fairness is a property of the way processes and messages are handled, rather than of a
system of processes. It is proved for the process-management code level of a system, rather
than for the collection of processes that is managed. At the process level, fairness must be
assumed in order for liveness properties to be proven.

Deadlock

When a group of processes is unable to proceed because each is waiting for one or more of the
others to take some action, the processes are deadlocked. The queuer process can become
part of a deadlock if its producer also can consume. If the producer tries to consume when
the queue is empty, the queuer is waiting to receive a value from the producer while the
producer is waiting to receive a value from the queuer. The file server can become part of
a deadlock if each of its users tries to receive a message from it before sending it a request.
In the model used here, waiting only occurs when a process is trying to communicate.

While the occurrence of a deadlock is the failure of a liveness property, its absence
is a safety property that is proved for all executions of the program. One possible safety
property is that cycles of communication requests over channels internal to a set of processes
cannot occur [8]. A proof of this property is possible if the system is structured so that the
communication paths are linear.
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Another form of deadlock is in the allocation of system resources by a resource allocation
process. Such a process either must execute a deadlock-prevention algorithm when making
allocations or execute a detection algorithm when requests arrive that cannot be filled. If
a deadlock is detected, resources must be removed from some of the processes in order to
break the deadlock. There are well-known algorithms that can be used for prevention or
for detection. These could possibly be proven correct using a verifier.

Divergence

Divergence occurs when a process stops attempting to communicate with its environment
because it continually chooses to do internal actions. If the producer and the consumer
processes only communicate with the queuer, the combination of the three processes di-
verges since it does not communicate with its environment. An observer may find it difficult
to distinguish a diverging (live) process from a deadlocked one, since in neither case can
the process communicate with its environment [9].

1.3.2 Specifying Progress Properties

Specifications in the Event System model used in this paper are properties that must hold
for the set of traces. Safety properties, including the absence of deadlock, are invariants
that hold for all traces. Liveness properties, such as the eventual willingness of a process to
communicate with its environment (absence of divergence), must eventually hold for each
sequence of events. For a particular trace t, eventually means that either a property P holds
for that trace or it holds for every extension of that trace of sufficient length. Formally,

3k E N. Vt' E T. It'l _> k A t < t' * 3t" E T. t < t" < t' A P(t")

Temporal logic, as described in the next chapter, includes always and eventually operators
that have proven useful in specifying safety and liveness properties [28,37,38].

Temporal logic is also appropriate for expressing fairness assumptions [15]. These as-
sumptions are used to prove liveness properties. They cannot be proved about specifica-
tions, but rather are requirements that must be satisfied by any scheduling algorithms used
in the implementation.

Process and resource schedulers that have access to secure information can be a source
of leaks of that information. They therefore should either be proven to be secure (using the
techniques discussed in the section on security) or be identified as a communication channel.
(Scheduling decisions based on priorities that are assigned using secure information may
be unavoidable.) In addition to security, fairness assumptions should also be proven of any
schedulers.
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1.4 Nondeterminism

A system of one or more processes is nondeterministic if the trace of its outputs cannot be
predicted with certainty from the trace of its inputs. A deterministic system may be treated
as a function from finite input sequences to output sequences, while a nondeterministic
system is a function to sets of output sequences. For a sequential process, nondeterminism
is introduced by allowing the process to make a random choice (represented in CSP with
the 0 operator). For a system with several concurrent processes, nondeterminism is also
introduced by varying the relative speeds of the processes. Different relative speeds may
result in different orderings of the messages internal to the system (and therefore of the
inputs to the various processes) and of the output messages.

In the Live Queue, the producer, the consumer, and the queuer are deterministic
(although the interleaving of the outputs with the inputs in the queuer is nondeterministic).
However, a system consisting of two producers and a queuer is nondeterministic, since
the output is an arbitrary interleaving of the outputs of the producers. The output for
a particular run of the system is determined by their relative speeds and how they are
scheduled.

In the File Server, filesystem is a system of processes (created using the I operator).
Each output process is deterministic (it just outputs a value and halts), but filesystem is
nondeterministic, since each output is generated by a different process and their sequencing
is determined by how these processes are scheduled and by how long they take to execute.

1.4.1 Synchronization

Sometimes, nondeterminism caused by the arbitrary progress of several processes is unde-
sirable. In a system with a producer process and a bounded queue that discards inputs
when it becomes full, a fast producer (relative to the rate at which values are removed from
the queue) can result in items becoming lost. If the producer can be delayed whenever the
queue is full, no items will be lost and the system will be deterministic.

Various forms of synchronization mechanisms have been suggested to control the relative
rates of processes. In the model used here, processes are synchronized through message
passing. In the Live Queue with a single producer, the producer and the queuer are
synchronized such that their combination is deterministic. Without synchronization, the
set of traces for a system of processes is the arbitrary interleavings of the traces for the
individual processes. With synchronization, some of the interleavings are not possible and
therefore the set of system traces is smaller.

A special form of synchronization requirement, called serializability, is found in database
management systems. A transaction is a sequence of atomic actions whose effect should be
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deterministic. A database management system that handles several transactions concur-
rently should ensure that the transactions do not interfere with each other, or are serializ-
able. Using traces, serializability can be expressed as follows:

For every trace t in which the events of several transactions may be interleaved,
there exists a trace t' in which the events of the transactions are not interleaved
and t' is a permutation of t.

Techniques for specifying and verifying serializability are further discussed in the report on
database consistency.

1.4.2 Race Conditions

An alternative to using synchronization to avoid undesirable nondetermiuistic choices is to
rely on the scheduler and the timing of the events in the system. This is known as a race
condition (it is assumed that the "good" sequences will always beat the "bad" sequences).
Normally, however, race conditions should not be used in reasoning about an execution.
Modifying the program or changing the compiler or the hardware on which the system is
run can change the timing. Also, faults during execution can affect the timing.

1.4.3 Verification

In verifying a nondeterministic program, the properties being proven must be shown to
hold for each possible execution. In a system v.ithout any synchronization, the number
of possible executions is exponential in the number of processes. Therefore, verifying each
possible execution is impractical.

A solution to this problem is to prove that a property is an invariant. The property is
shown to hold initially and then is also shown to hold regardless of which choice is made
provided that it was true before the choice was made. In the model used in this report,
processes do not interfere with each other in that the truth of a property of some process
depends only on the sequence of events of that process. Therefore, a property proven to
be an invariant for a sequential process must hold for that process in a system containing
other processes. The conjunction of the individual invariants must be an invariant of the
system.

When considering security, a synchronization mechanism provides a two-way flow of
information. For synchronous message passing as used in this study, an implicit acknowl-
edgement is returned to the sender of a message. (The acknowledgement can frequently be
combined with a reply to the message.) The acknowledgements can be ignored if each com-
ponent interacts only with a communication network that delivers messages asynchronously
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and is proven to be secure. (There is no information flow from the receiver of a message to
the sender.)

Another possible source of security problems is information passed through the schedul-
ing algorithm. For example, the scheduler could signal information by increasing the service
given to one process in relation to that given to another. The scheduler must either be a
trusted piece of the system or it must only receive information, such as process priorities
and the creation or deletion of a process, at the lowest security level of the system.

1.5 Fault Tolerance Requirements

1.5.1 Introduction

Distributed computing and fault tolerance are closely related. Making a system fault-
tolerant requires that parts of it be replicated and that computations can be restarted.
Tools that aid in the specification and verification of constructs that achieve fault tolerance
in secure distributed systems must therefore allow for the specification of how the system
parts should be replicated and restart/recovery applied and they must provide for the
implementation of these requirements. Some general discussions of fault-tolerant systems
can be found in [1,53,54,55.

This chapter will indicate a number of the problems that have to be dealt with by a
mechanism that implements fault tolerance by means of software replication. The model
of a distributed system based on an object-oriented system approach was described in the
introduction. It views the system as a collection of objects that interact only by passing
messages. We will use the term component to indicate a collection of replicated objects that
perform the same function, together implementing the fault-tolerant function. Replicated
objects may either be identical, i.e. copies of a single object, or different, i.e. implementing
the same function by using different algorithms. A faulty component is a component of
which one or more of the composing objects are faulty. However, as long as the faults
of the objects are masked, the component's behavior satisfies its specification, i.e. the
component is fault-tolerant.

This chapter contains a survey of the mechanisms used to support fault tolerance and
a summary of the issues which must be considered when designing a fault-tolerance mech-
anism.

Failure models

Failures can be partitioned into two classes, depending on whether repair is required follow-
ing a failure. Hard failures influence the future operation of the component, and cause the
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need for repair. These are opposed to transient failures that do not influence subsequentr operations [50].
An object failure occurs when the behavior of the object no longer satisfies its speci-

fication. A component failure occurs when it can no longer mask or recover from object
failures. It will then show behavior that no longer satisfies its specification. Behavior of
objects in response to a failure can be classified according to the nature of the disruption
it causes. Four models can be distinguished that describe this behavior.

Crash failures An object halts in response to a failure and there is no way for other
objects or components to detect this.

Fail-stop failures An object halts in response to a failure and other objects or components
can detect this. No faulty behavior occurs because the faulty object stops [46].

Omission failures Every now and then some information gets lost. This failure does not
influence the subsequent operation of an object..

Byzantine failures An object exhibits arbitrary and malicious behavior (30].

Crash, fail-stop and Byzantine failures all fall into the class of hard failures, of which
Byzantine failures are the most disruptive. Allowing Byzantine failures is the weakest
possible assumption that could be made about the effects of a failure. Since a design based
on assumptions about the behavior of faulty components runs the risk of failing if these
assumptions are not satisfied, it is prudent that life-critical systems tolerate Byzantine
failures. Omission failures are transient failures and are often exhibited by communication
lines. A message that is in transit might be corrupted, but subsequent transmissions will
succeed.

Requirements for fault tolerance are usually specified in terms of MTBF (mean-time-
between-failures), probability of failure over a given interval, and other statistical measures
[16]. However, there are advantages to describing the fault tolerance of a system in terms
of the maximum number of failures that can be tolerated over some interval of interest. We
shall call a component consisting of a set of distinct objects t fault-tolerant if it satisfies its
specification provided that no more than t of those objects become faulty during the interval
of interest. Asserting that a component is t fault-tolerant makes explicit the assumptions
required for correct operation; MTBF and other statistical measures do not. Moreover, t
fault tolerance is unrelated to the reliability of objects that make up the component and
therefore is a measure of the fault tolerance supported by the component architecture,
in contrast to fault tolerance achieved simply by using reliable objects. Fault tolerance
of an actual component will depend on the reliability of the objects used in constructing
that component. In practice, t should be chosen based on statistical measures of object
reliability in a way that minimizes the probability of more than t failures during the interval
of interest.
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Software Replication

Failures-be they hard or transient-can be detected only by replicating actions in a failure-
independent way. One method to do this is by performing the action using objects that
are physically and electrically isolated. We call this replication in space. The validity of
the approach follows from an empirically justified belief in the independence of failures at
physically and electrically isolated devices. A second approach to replication is for a single
object to repeatedly perform the action. We call this replication in time. Replication in
time is valid only for transient failures.

Techniques used to detect failures are well-known and widely used, so we will not dis-
cuss them here any further. Some examples are duplication, timeout mechanisms, and
consistency checks [55].

In response to a detected failure, a fault-tolerant system can behave in two different
ways. One way is to mask failures, i.e. to hide the effects of failures by substituting correct
information. This involves masking redundancy, which can be provided by having multiple
replications of an object in combination with some voting mechanism.

The other way is to allow dynamic reconfiguration or recovery of the system. This
is referred to as dynamic redundancy, and uses redundant objects, stand-by sparing, and
recovery (rollback) mechanisms.

Many fault-tolerance techniques are a combination of the techniques mentioned above.
Thus, classifying a technique using a single term often is not possible. We will use com-
binations of the terms mentioned above to indicate the type of a technique, but the main
differentiation will be in techniques that use masking redundancy or dynamic redundancy.

This study investigates the constructs that are currently used to support fault tolerance
by means of replication. It discusses the specification and verification of these constructs
and their possible implementations. The development of a construct for replication also
requires a profound understanding of the problems that result from having multiple copies
of software objects in a distributed system. The construct must adapt the syntax and se-

mantics of I/O commands to incorporate replication. Implementation of the construct must
solve the problems of communication, synchronization, and identification of the replicated
objects.

Software Restart/Recovery

Both masking and dynamic redundancy techniques will fall after a certain number of objects
has become faulty. Eventually, human intervention will be necessary to handle the repairs
required. However, before this point is reached, restart/recovery techniques may try to
recover faulty objects.
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Software failures can be overcome by restart/recovery mechanisms if a system provides
dynamic redundancy. This implies that state information has to be saved periodically as
checkpoints, and, when a failure occurs, computation must be restarted from (roiled back
to) its last checkpoint. If a failure is due to a hardware failure of the system on which an
object resided, replacement of the faulty system part may be necessary. Information must
be provided on how to reconfigure the system and on how to reintto ate objects that resided
on the faulty system part. The time and information needed to perform these actions are
critical factors influencing the fault tolerance property of a system.

If a system provides masking redundancy some caution is required. If the results of
performing a set of replicated actions disagree, a failure has occurred. Without making
further assumptions, this is the strongest statement that can be made. In particular, if
the results agree, we cannot assert that no failure has occurred and the results are correct.
This is because if there are enough failures, all of these might be corrupted, yet still agree.
However, this only occurs if there are more failures at one time than the system is able to
handle correctly according to its specification, in which case it can be expected to exhibit
arbitrary behavior.

Some appropriate action has to be taken to handle faulty objects that participate in
masking failures. One way to cope with faulty objects is to adapt the voting scheme in a
way that reflects the degradation of the system (graceful degradation). However, in order to
preserve the system's masking ability some form of dynamic redundancy has to be added.

Besides being a support to the redundancy techniques described above, restart/recovery
techniques can be used as fault-tolerance techniques all by themselves. In fact, the first
efforts to implement fault tolerance involved restart/recovery techniques. These techniques
can provide either backward error recovery after a failure has occurred, or it can provide
forward error recovery after detecting an exceptional state. Examples of both mechanisms
will be discussed in the next section.

1.5.2 Fault-tolerance techniques

Fault tolerance techniques are in most cases a combination of three mechanisms: repli-
cation, which can be subdivided into masking redundancy and dynamic redundancy, and
restart/recovery techniques. This section presents a survey of fault tolerance techniques
and the different structures that have been proposed to support them.

Replication

Fault detection is the first step in accomplishing software fault tolerance. As mentioned
above, fault-detection techniques are fairly well understood and are not discussed here.
Our main interest concerns ways to handle replication of software objects to provide actual

25



tolerance of faults that have been detected. The two basic approaches to software fault
tolerance by means of replication are discussed below.

Masking Redundancy Masking redundancy provides fault tolerance by either isolating
or correcting faults that are the result of faulty components before these results reach other
(non-faulty) components. Trying to prevent the effects of faults from spreading out over
the system by isolating them is also referred to by the term fault confinement. Masking
redundancy is a static form of redundancy in that no intervention occurs from elements
outside the component. This implies that when masking redundancy is exhausted, any
further faults will cause component failures. Several masking-redundancy techniques are
described below.

N-Modular Redundancy is a technique that involves multiple replications of an
object, and a voting mechanism. Fault tolerance is achieved by executing all replications,
either sequentially or in parallel, and then sending the results to the voter. The voter
decides on the outcome of the fault-tolerant component.

Three replications of an object give enough redundant information to mask one faulty
object in the component. This is accomplished by a majority (two-out-of-three) vote on the
outcomes. If a system is made t fault-tolerant by replication, t+1-fold replication permits
failure detection but not failure masking when there are as many as t failures. When there
is disagreement among t+1 independently obtained results, one cannot assume that the
majority is correct. Masking t failures requires 2t+l-fold replication, since then as many
as t values can be faulty without causing the majority value to be faulty.

In this scheme, the voter is a single point of failure. If the voter is faulty, the component
is not fault-tolerant in that it still can produce faulty outcomes. To overcome this problem,
replication of the voter is proposed. The fault-tolerant component will always have one
point of failure in the voter where the results of all voters come together to produce a single
component output.

Synchronization of the multiple replications in N-modular redundancy is necessary to
prevent faulty outputs. This can be accomplished by associating a logical or physical clock
with each replication [27], and running an agreement protocol to synchronize clocks. Several
different agreement protocols that solve the consensus problem in distributed systems exist
and are discussed in (14,481.

A variation of N-modular redundancy is provided by a technique called N-version
programming or design diversity [2]. Instead of having identical replications, a number
of independently-developed algorithms are used that perform the specified function. Making
the algorithm different for each execution producing the results to be voted on may result in
some protection against hard failures caused by software design faults. However, experience
has shown that, in spite of independent development, design faults tend to cluster in the
more difficult parts of the different algorithms resulting in coincident errors (13]. Thus,
the improvement of system reliability using this scheme is not as high as was expected.
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Moreover, the assumption of failure independency was shown not to hold for a certain
general application (26].

Different voting schemes can be found if the values voted upon can lay in a small interval
of analogue values, i.e. slightly different values are accepted to be correct. Methods are
to take the mean instantaneous value (the average) or an average weighted by a priori
probability of input source reliability. Another possibility is to take the mean of the two
most similar values. Yet another scheme, called pseudo voting, chooses the median of three
signals [55].

State machines A general method for achieving fault tolerance and implementing
distributed control in distributed systems is presented in [51]. It is based on N-modular
redundancy of a module that implements the concept of a state machine. A state machine
consists of state variables, which implement its state, and commands, which transform its
state. Each command is implemented by a deterministic program; execution of the com-
mand modifies the state variables and/or produces some output. A client of the state
machine makes a request to specify execution of a command. The request specifies the
state machine, the command, and any information needed by the command. Outputs of a
state machine are completely determined by the sequence of requests, independent of any
other action in the system. Thus, they satisfy the deterministic security requirement.

The File System example defines a state machine with the operations "create" that
both changes the state and returns a value, "read" that returns a value, and "delete" that
changes the state. The Live Queue example defines a state machine with "enq" and "deq"
operations.

A state machine is a general programming construct that can be implemented in various
ways. It can be implemented as a collection of procedures that share data, as in a module;
as an object that awaits messages containing the requests and performs the actions they
specify; and as a collection of interrupt handlers, in which case a request is made by causing
an interrupt.

A t fault-tolerant state machine (FTSM) can be implemented by replicating it and
running a copy on each of the processors in a distributed system. The scheme for imple-
menting a t fault-tolerant state machine is based on fault-tolerant implementations of two
abstractions.

Agreement Every non-faulty copy of the state machine receives every request.

Order Requests are processed in the same order by every non-faulty copy of the state
machine in a way that is consistent with potential causality.

Agreement can be implemented by any protocol that, whenever a client makes a request,
disseminates this request to all copies of the state machine. Depending on what type of
failure the t FTSM is to tolerate, t+1 (fail-stop failures), 2t+l (Byzantine failures with
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digital signatures), or 3t+1 (Byzantine failures) replications are sufficient to mask t failures.
Agreement protocols for the different failure models can be found in (14,491

Order can be implemented by having clients assign unique identifiers to requests and
having state machines process requests according to a total ordering relation on these
identifiers. This ordering relation must be consistent with potential causality. In order to
produce identifiers that satisfy the Order requirement either logical clocks or approximately
synchronized real-time clocks can be used [27,48].

Ensuring correct output outside the system requires the two points of failures of this
scheme, the voter and the output device, to be replicated. Each voter drives one output
device copy. Thus, the critical voting on the output is pushed out of the system. If the
output of a state machine is to a client inside the system, this client can vote on the outputs
of state machine copies itself. The voter-a part of the client-is faulty exactly when the
client is, so the fact that an incorrect output is read by the client due to a faulty voter is
irrelevant.

Ensuring correct time-varying input of a client can be done by making a fault-tolerant
sensor. The input source is replicated; the client that reads from the time-variant input
source is restructured as a state machine SM and a collection of clients. Each client reads
from a different copy of the input source; SM combines the values obtained from all the
clients. If a client cannot be restructured as a state machine, defensive programming of a
state machine, by adding tests and restrictions on its inputs, may limit the effects of faulty
requests.

The configuration of a system consists of three sets of objects: clients, state machine
copies, and output devices. If identification of faulty objects is possible, a higher degree of
fault tolerance can be achieved by reconfiguration. A recovery mechanism uses a collection
of clients, called configurators, one for each element of the system. Upon detection of a
failure of its element, a configurator makes a request to alter the configuration. Adding
and removing faulty elements is fairly straight forward. Integrating an element requires
some information which can be obtained by storing it in state variables or by requesting it
from identical elements. Synchronization of integrated elements is based on recent values
of request identifiers and the local synchronized clock.

Multiple Modules A second construct to support fault tolerance using N-modular
redundancy is described in [31]. It is based on a concurrent programming model consisting
of communicating sequential processes (CSP). In particular, it addresses the problem that
certain kinds of nondeterminism can produce inconsistency in majority voting even in the
absence of faults. CSP allows the expression of two types of nondetermiism with respect to
communication: local nondeterminism, which occurs when a process decides independent of
other processes for which communication to wait. It is introduced by using Boolean guards;
and global nondeterminim, which is resolved by inspecting the other processes with respect
to their willingness to communicate. Only mutual willingness may result in communication.
This kind of nondeterminism is introduced by using I/0 guards.
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A Multiple Module up is a set of copies P1 ,... ,P, of P with the following properties:

1. PI,. .. ,Pn all have the same specifications as P.

2. Associated with each Pi are copies of the input and output channels of P.

3. Each message sent from nP is obtained by majority voting on all the messages sent
from its copies. Each message sent to 3P is sent to all its copies.

4. All the copies Pl,...,P. of a multiple module fp resolve nondeterminism (local or
global) in an identical manner.

5. The copies PI,...,P, axe physically independent.

A syntactical construct which indicates that a process P is n-multiple is given in the paper.
Syntactically, a multiple module Up has the following form:

[I P(l) :: CL II P(2) :: CL 11... 11 P(n) :: CL l]

where CL is the command list associated with each process P(i). The syntax expresses
that the concurrent command will fail only if more than n/2 of P(i) fail (n is assumed to
be statically fixed). The syntax of I/O commands can be expressed in term of concurrent
commands.

The semantics of I/O-commands involving multiple modules are defined in the paper.
The modular redundancy semantics considers a state to be a mapping from variables to
values. A special state fail is used to denote a failing computation. Transition to fail occurs
when no agreement is reached in voting upon the states of the copies of the multiple module
np.

The semantics defined for multiple modules requires that every implementation of com-
munication must satisfy the following conditions:

1. All copies of P resolve nondeterminism (local or global) in an identical manner.

2. All copies of P process the contents of the channels which are involved in any form of
global nondeterminism in an identical order.

The violation of the second condition will generally result in the sending of different mes-
sages.

Two possible implementations are described. The first solution consists of using a par-
ticular interprocessor communication structure. It is based on indivisibility of processor
communications which is obtained by using a parallel bus and requiring that the bus be
released only after all copies of the receiver module have received the message. Condition
2 is satisfied by marking messages. The solution uses marks that indicate the moment of

29



reception of a message. The marks imply a total ordering of the received messages from the
various copies of a multiple module "P. The centralized communication structure assures
the same ordering for all copies. This implementation of send is proved to satisfy condition
2. Nondeterminism is solved by the receiver(s) by processing the message with the smallest
mark value.

In the second solution the processors run a decentralized agreement protocol on the
value of the mark which must be assigned to each received message. A signed message
algorithm of interactive consistency is used which is periodically started by each of the re-
ceiving processors. It determines the set of messages already received but not yet inserted
into the actual channels of the multiple module np. This solution is proved to satisfy condi-
tion 2. Nondeterminism is solved by choosing the guard referring to the channel containing
the message that precedes all other messages according to the marking order. In contrast
to the previous solution that imposes a fixed nondeterministic strategy, this solution allows
for the definition of a suitable nondeterministic strategy.

Both solutions allow N-version programming to be incorporated. Neither solution in-
volves synchronization of the replicated processes and/or planned scheduling.

Replicated Procedure Calls A third construct for implementing masking redun-
dancy combines remote procedure calls with replication of program modules [12]. The set of
replicas of the module is called a troupe. In a program constructed from troupes, an inter-
module procedure call results in a replicated procedure call. A distributed program will
continue to function as long as at least one member of each troupe survives. Communication
between troupes is based on & pared-message protocol which provides message sequence
numbers that uniquely identify each pair of messages among all the ones exchanged by a
pair of troupe members.

A client troupe represents a replicated caller, a server troupe implements a replicated
procedure. A client troupe member does a one-to-many call to the server troupe, and a
server troupe member handles a many-to-one call from the client troupe. Each member of
the client troupe receives the results of all server troupe members. To distinguish unrelated
calls from calls that are part of the same many-to-one call, the concept of a distributed
cal stack is introduced. An entry of this stack consists of a set of contexts, one from each
member of the troupe implementing the called procedure. The stack is used to trace back
the identifier of the troupe (the root troupe) that initiated the chain of calls. Two messages
that are part of the same replicated call have the same root identifier. A set of related
messages is reduced into a single result by a collator, a function that checks the equivalence
of messages and raises an exception if necessary. This structure can implement any kind of
voting mechanism.

To implement concurrent replicated calls some ordering of messages must be enforced
that ensures the same ordering at all server members. This may be achieved by any con-
currency control mechanism which can be properly coordinated with replicated procedure
call, such as nested atomic actions in combination with a two-phase locking protocol.
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Crashes are assumed to be detected by the paired-message protocol (timeout). Re-
placement of crashed members might be done by a copying variant of process migration
(DEMOS) or using checkpointing to stable storage.

Nested Transactions An extension of the concept of atomic transaction is proposed
in [36]: nested transactions that allow concurrency within as well as among transactions,
and enable error recovery after a failure occurred. A traditional transaction now can expand
to a tree of transactions. Transactions from the same level in a tree are synchronized
among themselves using read-write locking. Resources are locked by transactions, and a
parent transaction inherits the locks as its children complete. If a child fails, only little
recovery has to be done because modifications are made permanent only when a top-
level transaction completes. The parent can implement recovery of the child's action by
retrying or alternate actions. A method for recovery of nested transactions is shadowing.
Whenever a transaction begins to hold a lock for an object, a backup or shadow copy of
the object is made. The transaction operates on one copy, and another copy is available
for re-installation. Thus, a number of different versions of an object exists, one for each
transaction holding a write lock for the object.

In a distributed environnier, management of nested transactions can be accomplished
by some extra bookkeeping, uy extending two-phase commit to coordinate the saving of
recovery information, ar by detecting and aborting orphan transactions. Policies for
locking objects that have N distributed copies are described in [4].

Dynamic Redundancy Fault-masking techniques improve system reliability by allowing
a system to operate correctly in the presence of failures, but it is limited by its static
configuration: a system employing a fault-masking technique cannot heal itself, but only
hide its failures. In contrast, dynamic redundancy techniques involve reconfiguration of the
system in response to failures. Reconfiguration requires information about the global system
state. A way to access global state information is presented in [10]. Further, reconfiguration
requires the ability to correctly locate faulty objects. This is often achieved by some form
of comparison, and also by periodic testing of objects. A method to implement the latter
which uses a watchdog processor is proposed in [63]. Fault-masking can be part of a dynamic
redundancy scheme and allows postponing of reconfiguration and repair actions until faults
threaten to become unmaskable because of the degradation of the system.

One of the drawbacks of N-modular redundancy with voting (NMR) is that fault-
masking ability deteriorates as more objects fail. The faulty replications eventually outvote
the good ones. However, an NMR system could continue to function if the known bad
objects could be discounted in the vote. Two methods of reconfiguration based on NMR,
called Reconfigurable N-Modular Redundancy techniques, realize this potential.

The first, hybrid redundancy, replaces failed replications with previously unused
spares. At any time N replications are used, with their output voted upon to produce
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the component output. When a disagreement is detected, the objects in the minority are
considered to be failed and are replaced by an equivalent number of spare objects. As long
as there are never more than LN/2J failed objects before reconfiguration can take place,
the component can tolerate the failure of P = (t + S) of its objects, where S is the number
of spare objects. This technique has to solve the problems of detecting the faulty objects,
integrating spare objects into the system when necessary, and synchronizing these new ob-
jects.

The second method is to modify the voting process dynamically as the system deteri-
orates. This technique is called adaptive voting. Each voter input ni is weighted by a
certain factor ai. In the pure form of adaptive voting, the decision is based on the sum
Ealnj, using a threshold detector. The aj are modified over time by the accumulated history
of disagreements and fault detection. In practice the ai are usually zero or one. Two adap-
tive voting techniques are the following. When one object falls, it and another object are
removed from the system, leaving an (N - 2) modular redundancy system, which preserves
the property that no tie is possible in voting. The other possibility is found in systems that
provide nonvoting mode operation. Upon failure the system switches to a lower-redundancy
scheme. It can repeat this until it has reached the state that only one object is left. Of
course, the system reliability degrades accordingly unless faulty objects are repaired and
reintegrated into the system.

Software Implemented Fault Tolerance (SIFT) The SIFT system is an ultra-
reliable computer for critical aircraft applications that achieves fault tolerance by the repli-
cation of tasks among processing units [66] and a hybrid redundancy mechanism. The
system executes a set of tasks, each of which consists of a number of iteration.. Reliability
is achieved by having each iteration of a task executed independently by a number of sites.
Then, a two-out-of-three vote on the outcomes of the replicated iteration determines the
input of the next replicated iteration. Optimization is achieved by voting on state data
only at the beginning of each iteration. This implies that communication only needs to be
loosely synchronized. An advantage of this scheme is that it is less likely for simultaneous
transient errors of iterations at different sites to result in correlated failures. The number
of replications of a task varies with the task and with time, depending on how critical the
task is. Allocation of tasks is done dynamically by a task called the global executive. This
task is replicated at each site and diagnoses failures. Based on this knowledge it decides if
an object has become faulty and reconfigures the system. Further, a task called the local
executive takes care of local error handling, scheduling, and voting. Other fault-tolerance
mechanisms as N-version programming and recovery blocks may be incorporated into the
system.

Formal specifications of the SIFT executive software have been written using the SPE-
CIAL language developed at SRI [44]. A hierarchy of models is used to express the different
aspects of correctness. The SIFT system itself may be viewed as the lowest level model.
A higher-level model then must be proved to accurately describe the next lower-level one.

32



b

A model consists of a set of states and a transition relation that allows nondeterministic
transitions. System behavior is expressed by a sequence of states. Concurrency can be
represented by transitions that change disjoint components of a state, so that the order in
which they occur is irrelevant.

In the reliability model a state (h,df) represents the number of handled, detected, and
occurred failures respectively. Associated with each value of h is a safety factor SF(h)
which reflects the additional number of failures the system can successfully cope with. A
safe state is one in which f - h : SF(h). Two properties are proved to hold which ensure
that SIFT meets its reliability requirements.

1. If the system remains in a safe state, then it will behave correctly.

2. The probability of the system reaching an unsafe state is sufficiently small.

In the allocation model a transition represents the execution of one complete iteration of
all tasks. The correctness property of SIFT-property 1 above-, for this model expressed
in terms of I/0 correctness, is proved to hold and the correctness proof for this model is
derived. Further, the correspondence between the two models is shown.

Fault-Tolerant Multiprocessor (FTMP) Another system that implements fault
tolerance is the fault-tolerant multiprocessor (FTMP) described in [24]. This system also
uses hybrid redundancy, but voting always involves three objects. This is referred to as
Triple Modular Redundancy (TMR). FTMP has adopted a fully synchronous approach to
communication, which allows system management to be effected by majority rule. Objects
in the system can be retired from participation in a triad and given the spare status, and/or
reassigned in any triad configuration under executive control. Reconfiguration is carried
out periodically to search for latent faults. Failure detection and correction is done by the
voters which also identify the faulty objects. Recovery involves assignment and startup of
a spare object to the triad that discovered a failure. As a second level of fault tolerance a
rollback/restart mechanism is provided.

FTMP has several failure models, each of which is amenable to a different mathematical
tool. Survival probability is modeled as a a set of Markov processes, whereas the probability
of failure due to exhaustion of spares is modeled using combinatorial methods. An extensive
analysis of the system has been done using the different models. This showed that for
random hard failures the system meets its requirements. However, not much is stated on
how these models can be validated.

Restart/Recovery As was mentioned above, recovery techniques can be used in combi-
nation with replication, but also as stand-alone techniques. Recovery techniques have two
major approaches: backward error recovery and forward error recovery. Backward error
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recovery mechanisms correct the system state by restoring the system to a state which
occurred prior to the manifestation of the failure. A system structure that supports back-
ward error recovery is the recovery block scheme. Forward error recovery techniques aim
to identify the failure and, based on this knowledge, correct the system state containing
the failure. Exceptions, signal- and raise-operations, and exception handlers are common
mechanisms to provide forward error recovery. Also combinations of the two approaches
are proposed.

Many techniques for supporting fault tolerance have used the property of atomicity.
Recoverable atomic actions conform to the "all or nothing" view, which requires that either
all the modifications made by the action reach their final state, or no modifications are
made at all. Recoverable atomic actions specify that both indivisibility and recoverability
are fundamental requirements for atomicity.

We will describe a number of restart/recovery techniques in the rest of this section.
First, forward recovery schemes are presented of which there are not many. Second, back-
ward recovery schemes are discussed.

Forward error recovery schemes The word forward' refers to the fact that recovery
does not involve a previously reached system state, but that control is transferred to a
special action that will try to correct the system state. Forward error recovery involves the
following mechanisms. Failures are detected by entering unusual states that will signal or
raise exceptions. The action that deals with an exception is called an exception handler. If
several exceptions are raised concurrently, an exception resolution scheme selects a single
exception to represent the combination of the exception conditions. For this purpose,
exceptions are organized into a tree in which the upper bound is the universal exception.

Atomic Actions Atomic actions, as a tool for controlling interactions when shared
data are accessed, have been studied extensively. In [62] an extension of this concept is pro-
posed which allows concurrency within atomic actions, execution of a single atomic action
at different sites, and forward error recovery within an atomic action. An atomic action
containing concurrency is structured as a (possibly changing) collection of processes, each
of which is executing a sequence of subordinate atomic actions. This structuring implies an
ordering constraint between the subordinate processes that belong to a single process. The
scheme presented associates one process with each atomic action. Such a process can create
concurrent processes for subordinate atomic actions. To avoid the potential problems of
this scheme (resource locking and process failure), the parent process is severely restricted
during the execution of concurrent actions it has created. It takes the role of 'traffic direc-
tor' and cannot access shared data nor can it execute nonelementary subordinate actions
unless they are to execute concurrently. If these restrictions are enforced, then neither
locking of resources nor exception handling present any special problems.

To implement forward error recovery, exception handlers to be called upon the failure of
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a certain function are specified in the function header. An exception is handled only after
all subordinate concurrent actions have completed or also signaled an exception. Multiple
exceptions are combined using an exception tree mechanism. Alternatively, subordinate
atomic actions may be terminated by raising a special abort exception which ignores all
other exceptions, rather than waiting for them to complete normally.

An arbitrary mechanism can be used to implement atomic actions. Locking is proposed
for synchronization. On invocation of a subordinate concurrent action it is necessary to
check precedence constraints, and hold the action pending if some are unsatisfied. When
all local constraints are satisfied, a local process may be started for the action. If the action
is to be executed at another site, a message containing the information needed to perform
the action is sent to the destination site. This site is added to the remote list of the action.
There, a tree is constructed for the action containing information on all its ancestors for
termination purposes. After checking local precedence constraints, the concurrent action
can be started. On termination, the parent action is notified, which may involve sending
a message that includes the remote list of the termination action. If so, this list is merged
into the remote list of the parent process. Information on locks is passed this way. When
a top level action terminates all changes must be made permanent. This is done using a
two-phase commit protocol.

Exception handlers are implemented as atomic actions, and thus are handled the same
way. Backward error recovery can be incorporated easily by adding alternates to the atomic
action. As no changes are made unless the atomic action commits, no special state saving
has to be done.

Backward error recovery schemes All forms of backward error recovery require some
redundant object-state information to be recorded as an action executes. The information
is used to roll back an interrupted action after a failure has occurred to a point for which
correct state information is known. Three forms of backward error recovery are considered:
retry techniques, checkpoint techniques, and journaling techniques.

Retry techniques are the fastest form of error recovery, and conceptually the simplest.
They are most commonly employed to tolerate transient failures. Immediately after an
error is detected repairs are effected. This consists in pausing in the case of a transient
failure, and in reconfiguration in case of a hard failure. Then, the action is retried. This
necessitates knowing what the system state was before the action was first attempted.
If the interrupted action had already irrevocably modified some data, the retry will be
unsuccessful. A variation of this technique that also tolerates hard failures implies retrying
with a different algorithm that performs the same function.

A method that tries to recover from transient failures by multiple retries is described
in (63]. Ways to derive the number of retries for a given program are discussed, and the
outline of an algorithm for insertion of rollback points is presented. The method uses a
watchdog processor to initiate recovery actions through rollback.
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In contrast to retry techniques, checkpoint techniques allow some failure latency, for
the action is backed up to an earlier point in its execution. Some subset of the system state
is saved at specific points (the checkpoints) which is necessary to the continued successful
execution and completion of the action past the checkpoint, and which is not backed up by
other means. Rollback is part of the actual recovery process and consists in resetting the
system and action state to the state saved at the latest checkpoint. Hence the only loss
is the computation time between the checkpoint and the rollback, plus any data received
during that interval that cannot be recreated.

Important issues in checkpointing design are the following: the frequency of checkpoints
which determines the length of rollbacks and the amount of overhead of saving system states;
minimization of the amount of state information to be saved at each checkpoint; deciding
which information is important for rollback actions; validation of saved state information;
and the prevention of the domino effect [41]. The latter situation arises in systems with
multiple concurrent processes communicating with each other. If one process is rolled back,
any other process that receives data from it since the checkpoint must also be rolled back.
If these processes in turn communicate with others, it requires them to roll back too, thus
giving rise to the domino effect.

Journaling recovery is the simplest and least efficient method. A copy of the initial
data is saved before the action starts. During execution of an action all transactions that
affect the data are recorded. If a failure occurs, the action can be recreated by running copy
of the saved data through the transactions. Journaling is better than completely restarting
because it eliminates the loss of information involved in a restart.

Recovery Blocks A construct for backward error recovery is the recovery block. A
recovery block consists of a conventional block (like in ALGOL or PL/I) which is provided
with a means of error detection, called an acceptance test, a checkpoint mechanism, and
zero ore more stand-by spares, called alternate algorithms. Alternates perform the same
action in a different way or they are simpler and produce acceptable, though less desirable,
results.

The primary alternate corresponds exactly to the block of the equivalent conventional
program, and is entered to perform the desired action. The initial state is saved in the
checkpoint prior to any modifications. The acceptance test, which it a logical expression
without side effects, is evaluated on exit from any alternate to determine whether the alter-
nate has performed acceptably. A further alternate, if one exists, is entered if the preceding
alternate falls to complete, or fails the acceptance test. Before an alternate is so entered,
the state of the process is restored to the state saved in the checkpoint. If an acceptance
test is passed, any further alternates are ignored, and the statement following the recovery
block is the next to be executed. If the last alternate fails to pass the acceptance test,
then the entire recovery block is regarded as having failed, so that the block in which it is
embedded falls to complete end recovery is then attempted at that level.
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Checkpointing is done using a mechanism that saves nonlocal variables in a recursive
cache just before they are first modified. Intermediate checkpoints can also be used inside
a block to recover from transient failures.

In an environment with concurrent communicating processes the problem of the domino
effect must be solved. A technique that deals with this problem structures process inter-
actions into conversations. It involves a recovery block structure which is common to a
set of processes. Within a conversation, processes may communicate freely between them-
selves, but may not communicate with any other processes. At the end of the conversation
all the processes must satisfy their respective acceptance tests and none may proceed until
all have done so. If any process fails, all processes must be backed up to the start of the
conversation to attempt their alternates. As with recovery blocks, conversations can be
nested and have additional error detection and recovery possibilities.

The fault tolerance technique of N-version programming can be used in specifying the
alternates.

A technique that combines aspects of recovery blocks and N-version programming is the
Consensus Recovery Block technique [52]. It uses independent versions of an algorithm,
an acceptance test, and a voting procedure. The versions are ranked according to some
"goodness" criteria. Upon invocation of the consensus recovery block, all versions are
executed and submit their outputs to the voter. If no agreement is reached, a modified
consensus block is entered. No input state recovery is needed since all versions execute
concurrently.

Optimistic Recovery A journaling scheme [57] is based on dependency-tracking
which enables computation, communication, checkpointing, and committing to proceed
fully asynchronously. Dependency-tracking of a process on each other process's messages
allows to detect if other processes have performed any computations which causally de-
pend on messages which a failed process has lost. These computations can be undone by
rolling the process back to the latest state which does not depend upon lost messages.
Thus, arbitrary states can be recovered by restoring a checkpoint using the tracked depen-
dency information and then rolling forward by replacing the appropriate number of input
messages. In this scheme, a process cannot roll back too far and thus avoids the domino
effect.

Fault-Tolerant Atomic Actions A construct for fault tolerance which uses both
forward and backward error recovery is proposed in [25]. It supports fault tolerance in
a system of communicating sequential processes (CSP) and is based on atomic actions.
The construct is called a Fault-Tolerant Atomic Action (FT-Action). It is a distributed
control structure that a group of processes may join or leave in synchrony. Communication
is restricted to occur between processes in the FT-Action only. The FT-Action has the
following properties:
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1. Atomicity.

2. A recovery line for backward error recovery. It is established by the synchronized
entry of all participating processes, and by recording a checkpoint for each process.

3. A test line for processes which contains a test for each process that determines if any
failures have occurred. The exit statements together form a test line.

4. Recovery measures to be used inside the FT-Action. If one failure is detected, all
processes must take appropriate recovery measures.

5. Nesting of FT-Actions that allow for hierarchical recovery techniques.

Backward error recovery constitutes a conversation [41] between the participating processes.
Every process executes its primary and its acceptance test. If one process fails, an exception
is raised, and every process invokes backward error recovery by executing the next alternate.
All processes in the FT-Action are required to have the same number of alternates. Failure
of one of the acceptance tests in the last alternate results in a signal that the FT-Action
has failed. Forward error recovery is invoked if an exception is raised during execution
of the FT-Action. The exception is notified to all participating processes, and each then
will execute its handler for that exception. Recovery completes either when the handler is
executed successfully or when a new exception is signaled to a containing FT-Action. In
the latter case the FT-Action fails which may result in error recovery at a higher level.
Exception collisions are solved by a resolution scheme. When applied to a raised and a
signaled exception, the scheme ensures to raise a failure exception.

The combined recovery mechanism proposed associates a forward error recovery scheme
with the primary algorithm which is invoked for the specified exceptions. The backward
error recovery scheme would be invoked for other exceptions and any exceptions that might
occur in the handler. However, many other ways to combine the two mechanisms exist.

Implementation of FT-Actions employing CSP primitives for communication and syn-
chronization uses a voting technique based on a two-phase commit protocol [4]. Voting is
done to check consistency of the list of each process which specifies the other processes that
are allowed to participate in the FT-Action. The voting is implemented by message passing
up and down the chain of the processes that try to enter the FT-Action. A similar scheme
is used at the exit of a FT-Action to decide whether an exception has been detected. A
timeout mechanism use used to detect deserter processes, which will result in the abortion
of the containing FT-Action.

1.5.3 Design Issues

The model introduced in the first chapter presents a view of a distributed system as a
collection of objects that can communicate only by message passing. This model nicely
matches fault tolerance requirements since:
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1. Defining and limiting the way objects interact allows an easier control of several
problems concerning interactions.

2. Modularity is made easier and modifications inside a module can be easily performed,

if no changes to the external interface of the module are made.

3. Failures can be prevented from spreading out to other objbcts more easily.

4. It allows the use of consistency checks among objects, building a logical level of error
detection.

These attributes are very important, since the possibility of writing concurrent programs
in a modular fashion is very useful for correct software design and modification. Also
the possibility of structuring resource management and fault treatment with no central
coordination may enhance reliability by eliminating physical as well as logical single points
of failure [31].

The design of a construct that supports fault tolerance requires the following issues to
be considered.

General issues

* The failure model: The type and the amount of failures that the construct is to
q tolerate must be investigated. In order to determine these issues, a study of existing

software reliability models may be included. It may also depend on how critical the
application will be.

Failure detection: One or more ways to detect failures must be provided. In most
cases, some level of failure detection will be incorporated into the fault-tolerant struc-
ture. Also, a method to diagnose failures may be necessary for classifying and locating
failures.

* Fault confinement: The construct that supports fault tolerance must also allow
for fault confinement. This can be achieved by modular design which implements
protected environments, combined with masking techniques.

* Verification: The correctness of the scheme must be proved. This involves specifi-
cation of syntax and semantics of the construct. It also involves proving that these
specifications are consistent with the specification of the system model. Furthermore,
the implementation must be proved to meet these specifications, and it must be veri-
fied that the implementation meets the reliability requirements of the fault tolerance
mechanism.
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e Costs: An evaluation of the costs involved with supporting fault tolerance must be
made. It involves administration of memory and processing-time overhead which is
added as a result of supporting the scheme.

Replication

When using replication as a means to support fault tolerance the following issues must be
addressed:

9 Number: It must be decided if a copy of a replicated object must reside on every
site in the distributed system, or on only a subset. This will depend mainly on how
critical the function of the object is. Further, there is a choice of using all copies
in implementing the fault-tolerant function, or of assigning a spare status to some
number of them. If copies can be added dynamically a mechanism to appropriately
create and delete copies must be provided.

* Allocation: If the number of copies is less than the number of sites in the system,
an optimal allocation of these copies must be found, for either static or dynamic
allocation. In case of dynamic redundancy, the method must also handle the optimal
allocation of spare objects.

9 Identification: A mechanism that keeps track of the copies of an object is necessary
in order to address messages. Also, a way to uniquely identify objects is needed for
this purpose and in order to be able to identify faulty objects.

* Consistency: Consistency of the data associated with the copies of an object must
be ensured. Protocols to agree on the value of a certain object, and ways to lock an
object for exclusive access may be needed to achieve consistency.

* Synchronization: In order to determine the single output of a replicated function by
a voting mechanism, the participating copies must be at least loosely synchronized.

* The treatment of nondeterminism: Fault tolerance requires that all copies of a
replicated object resolve nondeterminism in an identical manner. Having a method
that satisfies this requirement is essential in supporting fault tolerance in a system
with concurrent objects which communicate by message passing.

* Communication: The fact that one or more objects participating in a communi-
cation may be replicated to support fault tolerance must be a transparent feature
of the system. In order to achieve this, the I/O commands of objects must be able
to handle different forms of communication. Two basically different communication
mechanisms can be distinguished:
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1. If the destination object is replicated, a message from the source object must

be replicated and send to each destination copy. This is called a one-to-many
communication. A method to perform this automatically must be provided.
This method must also ensure that the copies of the message can be identified
as belonging to the same communication in order to be able collect the response
on the replicated message later.

2. If the source object is replicated, messages from the replicated object must be
collected into a single message before it reaches the destination object. This
is referred to as a many-to-one communication. This method must be able to
distinguish between a message that is part of a replicated message and a single
message. Furthermore, it must have a way to distinguish between related and
unrelated messages to allow collecting and combining of replicated messages.

Supporting fault tolerance by means of replication requires that all copies of an object
handles messages in an identical order. Moreover, this order must preserve potential
causality. Thus, a mechanism that imposes a total ordering upon message identifiers
must be provided.

Recovery

Recovery in response to a failure requires to have available some information on a state that
is unaffected by the failure. The following issues must be included to support recovery:

* State information: First, a way of saving information in nonvolatile or stable stor-
age (storage which is not affected by any failures) is needed. Second, it must be
decided which information is critical for the recovery and restart of a faulty object,
and thus must be saved. Of course, the amount of information saved should be as
small as possible. Third, the time and frequency of saving state information must be
determined. These issues influence the length of rollbacks and the amount of overhead
involved with saving states. Fourth, it must be ensured that the state information
saved is valid. This implies that the information must be saved in a way that pre-
vents the incorporation of any effects of failures in the information saved. Finally, the
problem of an uncontrolled rollback of processes, the domino effect, must be solved.

e Handling faulty replicas: If an object is detected to be faulty, a way of handling
this object must be specified. In a system that will provide masking redundancy only,
the faulty object can be excluded from participation, which results in L degradation
of the system. Eventually, the whole system will fail. Thus, in general, it is advisable
to support some form of dynamic redundancy also. Dynamic redundancy allows
reconfiguration of the system in response to failures. It requires the availability of
global system information on the status, the location, and the interaction patterns of
objects. The following steps are involved in handling faulty objects:
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1. Locating the faulty object.

2. Excluding the faulty object from participation in the support of a fault-tolerant
function.

3. Replacing the faulty object by a spare one.

4. Notifying all other copies of the object of these changes.

5. Integrating the spare object by providing it with the appropriate information.
This implies that startup information must be available. Further, the new object
has to be synchronized with the other objects that implement the fault-tolerant
function, i.e. it has to be placed in the same state of execution.

It is necessary to understand all of the issues mentioned above in order to design tools
that will aid in the implementation of a mechanism to support fault tolerance in a secure
distributed system.

1.6 Real-Time Requirements

Many secure distributed systems have performance constraints. These constraints will
usually have the form "event e' must occur within t time units after event e". For example,
following a disk interrupt a new disk transfer should be initiated before the head passes the
start of the next block to be read. Also, the report of an abnormal event by a sensor on a
rocket must be handled before the event causes the mission to fail.

Performance constraints must be feasible. The time interval t must be large enough
to allow the processing required for e' to occur. This processing may require a sequence
of messages to be passed among the various objects that must cooperate to perform the
processing. Meeting performance constraints becomes harder when there are several such
constraints that compete for system resources and the use of objects.

Situations may sometimes occur in which not all of the constraints can be met. For
example, it may be possible to respond to a disk interrupt or to a sensor report, but not
to both, within the required time. Priorities should be specified so that resources will be
allocated to meeting the more important constraints. Efficient use of the disk can probably
be sacrificed when an abnormal event has been sensed. Messages or channels can also be
given priorities, so that an object can handle messages in order of their importance rather
than their arrival time. Note that the use of priorities may cause fairness assumptions to
be violated. When constraints cannot be met, a failure action should be specified.

When a message that must be handled quickly arrives at an object, the object may
already be busy. In most computer systems today, when a peripheral sends a message to
a busy processor, the processor is interrupted. Such a solution could also be used with
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objects. However, the object can be in the middle of a long modification of its state when
the interrupt occurs and its state may be inconsistent.

The state of an object can be guaranteed to be consistent when an interrupt arrives
if the state is never modified after the object is created. To change the state, a copy of
the object containing the changes is created. This approach can be used in the file system
example where files can be added and deleted from a copy of the file system while a file is
being read.

Much of the copying can be avoided if the state is implemented as a linked structure.
Only the parts that are being changed need to be copied. Links are used be point to the
unchanged parts. For the file system, only the segments of the directory that are modified
will be copied. Deleting a file is done by removing the link to it from the directory and
creating a file is done by adding a link.

If several objects must stay consistent with each other and there are several concurrent
requests to update the set of objects, accesses to these objects must be synchronized.
Version control using timestamps [42] can be used. This topic is discussed further in the
companion report on database consistency.

1.6.1 Time

Time has been ignored so far in this report. It is unimportant when proving safety properties
or when proving liveness properties of the form "eventually event e will occur". The order
in which events occur (the possible traces) is the primary consideration. When discussing
performance constraints, however, time is important. Timing information can be added to
traces [43], as explained in the next chapter.

When describing a system in terms of its traces, each event is treated as a single point
in time. A trace defines a total ordering on the events. In an actual system, events have
a duration and two events can overlap in time. In most cases, this will not be a problem.
The time of an event can be identified with its start. Overlapping events are either the send
and receive of the same synchronous communication and are represented by a single event
in the system trace, or they have no effect on each other and are serializabe. Serializable
events produce the same result when one is performed before the other as they do when
they are performed concurrently.

The amount of overlap of events is important to describe the speedup due to concurrency
or to determine the effect on performance of a change in system resources. A semantics for
CSP which models true concurrency has been developed (61]. Each element of a trace in
this semantics is a step, or multiset of (possibly null) events.

In a distributed system, measuring time intervals is more complicated than in a sequen-
tial system[27]. If there is a single global clock, each of the various nodes will experience a
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different message delay when reading the dock. If each node has its own dock, the rates of
the clocks will vary slightly. The clocks can be kept close to the same time (provided that
the variance in the message transit time is small). However, there is an inevitable error in
measuring time across several nodes of a distributed system.

1.6.2 Specification and Verification

The time required for a sequence of events can only be determined at a very low level of
implementation. It depends on which high-level language constructs are used to implement
the events, the compiler's translation of those constructs, and the hardware on which the
events are executed. The time for a message transfer depends on the communication system
and how busy it is. Therefore, performance requirements cannot usually be proven for a
specification.

What can be done is to specify performance requirements that must be satisfied by the
hardware, the process scheduler, and the resource allocators. The requirements may include
maximum, minimum, or mean timing requirements and reliability requirements [67]. The
specification of each event is extended to include an error action in case its performance
requirement is not met. The effect of such extended events is nondeterministic. It also may
be possible to prove that the specification is feasible if all of the performance requirements
are met.

Real-time requirements can have a negative impact on security in several ways. Being
able to read the time and to measure the duration of a sequence of events may allow a
process to infer that it was delayed by high security-level activity. Also, high security-level
activity may cause a low security-level activity to miss its performance requirements. Thus,
the clock that a process reads must be suspended while higher-level processing occurs.
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Chapter 2

Formalisms

2.1 Temporal Logic

Temporal logic (32,39] provides a formal way to express and to reason about properties that
vary over time. By modeling a program or system of concurrent processes as a sequence
of states, temporal logic can be used to specify and verify properties of such programs
and systems. This presentation will be informal and brief. The references give a more
comprehensive treatment of the subject.

2.1.1 The Logic

Temporal logic, which is a kind of modal logic, is not any bigger than ordinary first-order
logic. That is, whatever can be expressed and reasoned about using temporal logic can
also be expressed and reasoned about using ordinary first-order logic. The advantage of
temporal logic is that it offers a concise notation for expressing time-varying properties by
eliminating any explicit reference to time, i.e., time does not appear as a parameter. The
rules of inference of temporal logic are derivable from the rules of inference of ordinary
first-order logic, but allow shorter proofs.

The idea is that there is a sequence of elements, in which each element represents a
state and the order of the states within the sequence corresponds to the order in which
the states occur over time. A basic premise of temporal logic is that time is discrete. A
temporal logic formula makes an assertion about the current state, which may be chosen
arbitrarily, and the rest of the sequence. If there are no temporal operators in the formula,
the formula is indistinguishable from a formula In ordinary first-order logic and it makes
an assertion about only the current state.
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Temporal logic adds to first-order logic the temporal operators Q (next), 0 (always),
0 (eventually), and U (until). 0 asserts that its formula is true in the state immediately
following the current state. 0 asserts that its formula is true in the current state and in

all states following. 0 asserts that its formula is true either in the current state or in some

state following. U is a binary operator; "PUQ" asserts that Q is true for some state s,

which is either the current state or a state following the current state, and P is true for

every state from the current state until (but not necessarily including) state s. Temporal

operators may be nested, which has the effect of assigning a (possibly) new current state

for the nested temporal formula. Here are some examples:

"P =* OP" is a temporal formula which says, "if P is true for an an arbitrary

state a, then for every state following s, P is also true."

"O(P A D3Q)" says, "There is a state s which satisfies P A Q and for which

every state following s satisfies Q."

"P * Q-,P" says, "Whenever P is true, then in the next state, P is false."

Some time-related properties require looking backward in time rather than, or in addi-
tion to, looking forward in time. To use temporal logic to express and reason about such

properties, it can be extended with the previous-time operators: -O (in the immediately
preceding instant), -0 (always in the past), -0 (sometime in the past), and -U (since).
Additional rules of inference, again derivable from the rules of inference of first-order logic,

allow reasoning about these kinds of properties. Example:

"P * -CQ" says, "If P is true for an arbitrary state s, then for some state

preceding s, Q is true".

2.1.2 Program Models

Several models of program execution have been developed which are compatible with using
temporal logic to express and prove program properties. The kinds of properties that
have motivated using temporal logic are those that have been previously called progress

properties in this report: deadlock, starvation, liveness, etc. Since these properties are

most interesting in the context of concurrent programs, the models encompass programs
consisting of cooperating concurrent (or interleaved) processes. A model and variations are
presented here which are representative of the models that have been developed.

A concurrent program consists of one or more processes, running in parallel. There
is a set of program variables, which may or may not be shared among all the processes,

depending on variations in the model. Each process is an independent transition graph with

labeled nodes (locations) and edges (transitions). Each edge in a process transition graph
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is labeled by a pair consisting of an enabling condition and a transformation. The enabling
condition is a predicate on the program variables and the transformation determines how
the values of the program variables in the next state are derived from the values in the
"current" state. A single node may have several edges emanating from it, in which case
the enabling conditions need be neither exhaustive nor exclusive. Thus, deadlock and
nondeterminism are allowed for single processes.

The Manna-Pnueli model (32] is a shared-variables model: the program variables are
accessible and shared by all the processes, and provide for communication and synchroniza-
tion among the processes. The program state consists of a set of values for the program
variables and a set of nodes (locations), one from each process, indicating the current node
for each process. Nonsensical programs, composed of processes whose edges specify con-
flicting values for the program variables, are avoided by assuming interleaved execution for
the processes, i.e., the current program state and the next one differ in location values for
no more than one process. Consequently the edge labels are considered indivisible (atomic).

2.1.3 Temporal Logic Applied to Program Properties

An execution sequence is a sequence of program states, each non-initial state derivable
from the previous one through an enabled transition effected for no more than one process.
The behavior of a concurrent program is characterized by its set of (possible) execution
sequences. Temporal logic, which is interpreted over sequences, can be used to state and
prove properties of concurrent programs.

For example, consider the LIVEQ examples used earlier to introduce the various progress
properties. In this section, we will model a system composed of a producer, queuer, and con-
sumer, and specify the various progress properties using temporal logic. Below, a variable
name preceded by a single quote refers to the value of the variable in the state immediately
following the current state. If a program variable does not appear quoted in a transition,
it is understood that the value of the variable is unchanged by the transition.
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Constants: max (maximum * of items to be held in queue)
Program variables: itemp (item produced by the producer)

?itemp (is available for queueing?)
itemc (item consumed by the consumer)
?itemc (is available for dequeueing?)
queue (array of items)
size (# of item currently held in queue)

Define anq(x) by 'size a size + I &
'queue['size] * x I
" ' itemp

Define deq(x) by 'size - size - 1 &
'?itemc &
'itemc U x

- ?itemp -> '?itemp & exists x. 'itemp a x
Producer -- Node P ---------------------------------- >1

--------------------------------------- I

?itemp & size < max -> enq(itemp) & "'?itemp
---------------------------------------------- >1

Queuer -- Node Q
- \

---------------------------------------------- >1
I ?itemc & size > 0 -> deq(queue[size]) k '?itemc

-------------------------------------------------- I

?itemc -> - '?itemc
Consumer -- Node C -------------------- >1

------------------------ I

Program state: (itemp ,?itemp,itemc,?itemc,queue,size,Ploc,Qloc,Cloc)
Initially: size a 0 & max > 0 "?itemp & "?itemc &

Ploc - P & Qloc w Q & Cloc - C
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Specification of Deadlock and Liveness

The system is stopped if each of its processes can proceed no further, i.e., if none of the
enabling conditions on the edges emanating from the current nodes of the processes are met.
After defining a predicate ?stopped, system deadlock and system liveness for the LIVEQ
example can be specified as follows:

?stopped = ?itemp A -(?itempAsize < max) A -'(-'?itemcAsize > 0) A -'?itemc
System deadlock: *?stopped
System liveness: D-i?stopped

A process can proceed only when one of its current enabling conditions is eventually met.
Liveness, absence of deadlock, and absence of livelock (absence of starvation) are largely
indistinguishable in a shared-variables model. Liveness and deadlock cannot be specified
for a process out of the context of the rest of the system, since the values given by other
processes to the shared variables determine whether any of the enabling conditions for a
process are met.

Liveness for the producer: o30-,?itemp
Liveness for the queuer: O1((?itemp A size < max) V (-,?itemc A size > 0))
Liveness for the consumer: 0O?itemc

Responsiveness and Conservativeness

A responsiveness property for the system is, "Every item enqueued eventually gets de-
queued." A conservativeness property is, "Every item dequeued was previously enqueued
at some previous time." Both these properties are straightforward to specify using temporal
logic.

Responsiveness: Vx. enq(x) =O 'deq(x)
Conservativeness: Vx. deq(x) = -Oenq(x)

Fairness

In a model with interleaving, fairness is an assumption that must be made to ensure that
each process gets a chance to execute.
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Divergence

Divergence occurs when a process, whenever given the opportunity to execute, chooses only
to make a transition that has no effect on the rest of the system. It is not clear whether
divergence can be satisfactorily specified using temporal logic and this model.

2.2 State Transition Model

The following model of systems of concurrent processes is similar to the model presented
in the section on Temporal Logic, but differs from it in important ways. In the new model:

* variables are not shared among processes,

* transitions (events), rather than shared variables, are the basis for synchronization
and communication between processes, and

e the model is compositional in that a system is constructed by describing the processes
that form its parts.

These differences, which make this model somewhat similar to the model of concurrent
computation which underlies CSP, is largely taken from Lamport's Action-Axiom seman-
tics [281. We feel that this model is suitable for the underlying model for the DSL speci-
fication and verification language, which is intended for specifying distributed systems. It
also corresponds well with the state machine technique for achieving fault tolerance. This
model allows the progress properties discussed earlier to be expressed in a natural way and
verified, with or without temporal logic.

Below, first the model is described. Then it is shown how first-order logic can be
interpreted with respect to this model. Finally, it is shown how temporal logic can improve
expressibility by allowing more concise statements of temporal properties than allowed by
ordinary first-order logic.

2.2.1 The Model

A concurrent program consists of two or more processes running at the same time. Each
process has its own set of variables, including a location counter, which are accessible only
by that process. Processes interact by sending messages through synchronous channels,
which are the only variables shared among the processes.
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Single Process

A process is defined by a set of states and a set of transitions. Each state is an assignment of
values to the process variables, including values for control predicates and input channels.
Control predicates are defined for each transition t as follows:

at(t) Control is at the beginning of t.

after(t) t was the last transition to complete.

The value of an input channel is a sequence of values sent to it. Each transition is an
enabling condition, which is a predicate on the states, and a transform, which is a mapping
from states to states. The enabling condition for transition t implicitly includes at(t). The
transform can only be applied to those states for which the enabling condition is true. A
transform can be a communication, which is either an input or an output over a specific
channel. An input transition changes the state by removing the first value (the head) from
the channel.

A state is nondeterministic when the enabling conditions of more than one transition
are true at that state. Any of the corresponding transforms can be applied. A state is
terminal when no enabling condition is true. If the process reaches such a state, it will
remain there and is said to terminate. Notice that whether a process is in a terminal state
(has terminated) is deterministic, but whether the process eventually terminates may be
nondeterministic.

The execution history of a process consists of a sequence of the form:

so 11 a ...

where so is an initial state of the process and Vi > 0 the enabling condition of ti at state
si-i is true and ti transforms si-, into si. If the process terminates, the execution history
will be finite, e.g.,

so 1 i 81 -h

It is convenient to deal only with infinite execution histories. A special final transition is
added with an enabling condition that is true for the terminal states and with the identity
transform. A process that terminates continues to perform this transition:

I fifll final
so -- .. . a -* , * .9 ...

This model is sufficient to specify and verify properties relating to progress as well as
determinism. For example, for a given execution history,
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the process terminates if 3i > 0. ti = final. Otherwise the process does not terminate,
but remains live. A process must necessarily terminate if it terminates in every possible
execution history. A process can possibly terminate if there is an execution history for
which it terminates.

Concurrent Processes

A system of concurrent processes is modeled as a process, as described above, and a set of
internal communication channels. The state is formed by combining the local states of the
subprocesses, except that the internal input channels are deleted and input channels that
occur in more than one process are combined. The transitions include all of the transitions
of the subprocesses except for communications over the internal channels and for final
transitions, all transitions formed by combining an input and an output from different
subprocesses that each specify the same internal channel, and a final transition whose
enabling condition is the conjunction of the enabling condition for the final transitions of
each of the subprocesses.

An execution history for a system of processes can be restricted to execution histories
for each of its subprocesses. The states of the restriction are formed from that subprocess'
contribution to the system state, extended with the channels from which the process inputs.
Because the sets of variables for the subprocesses are disjoint, only the transitions from a
subprocess can affect these states and therefore all other transitions can be ignored. If a
restricted history is finite and the last state is terminal, it is made infinite by adding final
transitions and repeating the last state.

A system state is a deadlock state if no transitions are enabled at it. An execution
history terminating in such a state is deadlocked. All other execution histories are infinite.
Each restricted history of a deadlocked execution history must either have reached a final
state or reached a state from which only internal communications are enabled and no other
subprocess has a matching internal communication.

Additional progress properties, which relate a process to its environment, can also be
expressed in this model. The fairness assumption is that for each nondeadlocked (infinite)
execution history, the restricted execution history for each subprocess is infinite. A subpro-
cess diverges if its restricted history contains only finitely many communication transitions.
A process is responsive to its environment if it eventually takes some action in response to
an event occurring in some other part of the system. For example, for a given execution
history "if subprocess p queries subprocess p' in transition ti, then subprocess p' responds
in transition tj, where j > i" expresses a responsiveness property.
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2.2.2 Formal Specifications

To summarize what has been described above, a process consists of:

STATES is a set of states, each of which is a function from (local) variables (including
control predicates and input channels) to values.

IC is an initial condition, which is a predicate on STATES specifying that the process is
at a starting point and that no values have been sent on the output channels.

TRANSITIONS is a set of transitions, each consisting of an enabling condition ECt and
a transform mapping T14 : STATES -+ STATES. A final transition can be applied
when all of the other enabling conditions are false.

HISTORIES is the set of possible execution histories for the process, consisting of infinite
sequences of states and transitions. STATE is a function that yields the state compo-
nent of an element in an execution history. For h E HISTORIES and i _> 0, STATEh(i)
yields the state after i steps of h. Also, Vi E HISTORIES. IC(STATEh(0)).

First-Order Logic
Security for a sequential process is proven for each security level I by creating an equivalence

relation =i on states and a function

witnessi : TRANSITIONSo -+ TRANSITIONS6

such that

1. Vt E TRANSITIONSI_1 . EC&(s) * s =1 TRt(s)

2. Vt E TRANSITIONSo. ECt(s) A s =1 s' *
ECitn (t)(s ) A viewl(witness1(t)) = viewl((t)) A TRt(s)=i TRwi=1 e (t)(s')

3. Vt E TRANSITIONS". ECt(s) A s =1s' # ECt(s') A TRt(s) =1 TRt(s')

where viewl(h) is the sequence of those transitions in h dominated by 1, TRANSITIONS"I
are the input transitions dominated by 1, TRANSITIONSI_1 are the input transitions not
dominated by 1, and TRANSITIONSo are the output transitions. Security for a system of
processes holds if it holds for each sequential process.

A safety property is stated as an invariant predicate P over STATES. It is shown in
two steps:

1. IC(s) Z* P(s)
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2. Vt E TRANSITIONS. P(s) A ECt(s) =* P(TRI(s))

The first step shows that the property holds for the initial state of a history. The second
, step shows that if the property holds at the start of a transition, it will also hold after the

transition completes.

An example of a safety property is the absence of deadlock. The predicate that must
be shown to be invariant is:

3t E TRANSITIONS. ECt(s)

To show this, the first step is:

IC(s) * 3t E TRANSITIONS. ECt(e)

and the second step is:

E TRANSITIONS. ECt(s) * t' E TRANSITIONS. ECt'(TZt(s))

Since the existence of a true enabling condition on a state is not implied by the truth of
enabling conditions on each of the restrictions of that state (the enabling condition for a
communication over an internal channel is the conjunction of the enabling conditions for
the communicating elements, only one of which may be true), the "absence of deadlock"
predicate cannot be shown to be invariant by showing that it is invariant for each of its
parts.

Liveness properties are statements that eventually something will happen. An example
is that some value will eventually be communicated over internal channel c. A property L
is live after the nth step of history h if 3 n. L(STATEh(i)). The statement that property
L is satisfied infinitely often in history h is the same as stating that it is live after every
step of h, or Yn a 0.3i 2_ n. L(STATEh(i)). An assumption of fairness that is required for
most liveness proofs can be stated as:

(Vi 3i n. ij . ECt(STATEh(j))) * (3k > n. after(t)(STATE(k)))

This assumption states that any transition that is infinitely often enabled will be infinitely
often executed.

2.2.3 Temporal Logic

Safety and liveness properties can be stated more concisely by using operators from temporal
logic, rather than relying entirely on ordinary logic. The specifications are shorter and
clearer and support for these operators can be built Into a verifier.
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Safety properties are expressed using the 1 (always) operator. Thus, oP states that

P is a safety property and must hold for all states. It is proven by showing that it holds

for any initial states and that it is an invariant for each transition. Absence of deadlock is

expressed as 03t E TRANSITIONS. ECt.

Liveness properties are expressed using the -.# (leads to) operator. The meaning of

P -.., Q is P(STATEh(si)) * 3j _ i. Q(STATEh(sj)) and expresses the property that Q

is live at any state for which P holds. The fact that property P holds infinitely often in

every history is expressed as true - P or alternatively as

IC .P P A Vt. TPt(P A EC) - P

(Notice that a transition is applied here to a predicate rather than a state.) The fairness

assumption is:

(Vt' $ t. TRP(EC A EC,,) -. + EC,)) :* EC, -.+ after(t)

The following rules can be used in a proof of P -,* Q:

Sp-..* P

* (Vt E TRANSITIONS. P(s) A ECt(s) =: Q(TRs(s))) =* P -,+ Q

* P-'.R A R-.* Q * PF-Q

e If e is an integer-valued expression such that P(s) A (s(e) _< 0) = Q(s) and

en(s) = s(e) = n then (P A en -, Q V (P A e.), m < n) #- P -,. Q

@ If there is a finite set T C TRANSITIONS such that P(s)A-iQ(s) =I 3t E T (ECt(s)A

Q(TRt(s))) then (P A -Q -. P V Q) * P,+ Q

The last rule assumes that the history is infinite and fair.

2.3 Timed CSP Processes

The model described here was developed by Reed and Roscoe at Oxford University (431.
The notion of an event is generalized to a timed event (t, e), where t is a non-negative real

number and e is an event, that represents an occurrence of e at time t. All times represent

values of a (purely conceptual) global clock. Traces are replaced by timed tmce, which are

finite sequences of timed events ((to,eo), (ti,el). .. (ta-,,en-1)) such that to 5 t, 5 ... tu.1.

The possibility that events e and e' happen truly concurrently is admitted by allowing t = t'.

For each communication e, 6 represents e occurring the instant that it becomes available.
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One additional extension to traces is required. A timed trace has become stable when
the process that it represents has made all of the invisible internal progress that it can and
the only way for it to proceed is to engage in some communication. The time at which
a trace becomes stable is its stability time. The notion of trace abstracts away from the
invisible happenings occurring between its events, and that of stability puts some of that
information back in the form of timing information.

As an example, suppose that the timed trace ((1,b),(3,c)) becomes stable at time 4,
and that the only visible events to occur have been (1, b) and (3, c). Between times 3 and
4 internal changes in the process may dictate changes in the externally visible behavior
it is willing to undertake. It may extend an offer to communicate with the outside world
at time 3.2 and then rescind the offer at time 3.5. Should no visible event occur by time
4, then internal change (at least as it affects the possibility of engaging in visible events)
ceases. Notice also that the externally visible sequence ((1, b), (3, c)) may result from any
of several different internal paths of control. One such path may stabilize immediately,
another stabilize at time 3.5, etc. The stability time associated with ((1, b), (3, c)) is the
earliest time at which all possible ways of producing the trace have become stable. There
may be no such (finite) real number. Therefore, the values used to denote stability times
are the elements of the set STAB = [0, oo) U {oo} where [0, oo) are the nonnegative real
numbers.

A timed process P is an internally consistent set of pairs of the form (tr, x) where tr is a
timed trace and x, the stability time of tr, is an element of STAB. For example, the process
DIVERGE - which uselessly loops forever - is identified with the singleton set f(0, oo)}.
That is, it engages in no visible activity and is never stable. The do-nothing process STOP
is associated with the singleton set {(0, 0)}. It engages in no visible activity and is stable
from the very start.

The internal consistency conditions are an extension of the consistency conditions for
an untimed process. Here are some examples. To state them neatly, well introduce one
further piece of terminology:

Tracea(P) = {tr I 3x E STAB. (tr,z) E P}

e If tr E Traes(P), then for any initial segment tr' of tr, tr E Traces(P).

* No finite interval of time can contain infinitely many events.

* A given timed trace has only one stability time. (If (tr, x) E P and (tr, y) E P, then
x = y.)

* None of the timed events in a trace can occur later than its stability time. (If
(tr(t,e),x) E P, then t 5 x.)

56



9 The first opportunity for any (visible) timed event to extend the timed trace tr cannot
occur later than its stability time. (If (tr, x) E P and tr^((t, 6)) E Traces(P), then
t : x.)
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Chapter 3

Specification and Verification of
Fault-Tolerance

3.1 Introduction

3.1.1 Motivation

The more complex a system grows, the greater the number of its components which may
fail. For very complex systems, it becomes necessary to consider ways in which the failure of
the entire system can be made less dependent on failures of particular components. These
considerations are usually called "fault-tolerance".

Distributed system design and fault-tolerance are closely related. One prime reason for
building a distributed system is to reduce the dependence of that system on the reliability or
failure of a single node. So distributed systems may spring from a desire for fault-tolerance.
Conversely, once the processing taking place in a distributed system becomes dependent on
complex interrelationships between nodes, the probability of failure for the entire system
becomes greater than the probability of failure for single nodes. This is because the failure
of any node may still disable the entire system. Therefore, complex distributed processing
will not be reliable without fault-tolerance.

In this chapter, we will be concerned with specification and verification of fault-tolerance
properties. We will be seeking precise definitions of the term "fault-tolerance", and asking
what steps must be taken to prove that a system design in fact is fault-tolerant according
to the definition. We will only be minimally concerned with strategies, designs, and algo-
rithms used to implement fault-tolerant systems, and only then as examples to show why
a particular definition of "fault-tolerance" is relevant.
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Fault-tolerance is a general property of systems. Because it is a system property, its
formal analysis should have certain aspects in common with analysis of other system prop-
erties, such as security, liveness, determinism, and so on. Some points of similarity are:

* The definition of "fault-tolerant system" must not depend on factors external to the
system.

* Neither should the statement of the fault-tolerance property involve every detail of
the system. It should be possible to make statements about "fault-tolerance" without
referring to particular system designs. Therefore verification of fault-tolerance should
not generally require verifying the correctness of every detail of the design.

# A fault-tolerant system may be implemented from the interaction of several con-
stituent parts. Therefore, specifying and implementing fault-tolerance may involve
specifying properties of various components.

e It is possible to make a mistake in the implementation of a fault-tolerant algorithm
even though its theory is well understood. Therefore, formal specification of fault-
tolerance and formal verification of its correct implementation may serve to reduce
errors.

One previous effort toward verifying fault-tolerance can be found in the SIFT project
(Software Implemented Fault Tolerance) [66]. SIFT was an ultra-reliable fault-tolerant
computer designed for aircraft flight control. A precise model of this system was developed,
and constraints (specifications) on the model which implied the correctness of the system
were written down. However, the SIFT approach differs from ours, in that the property of
"fault-tolerance" was never considered in isolation, but was always implicitly subsumed in
the other system specifications. One could not prove, or even state, that SIFT was fault-
tolerant without additionally stating and proving that it satisfied many other correctness
properties as well. We intend to find a definition of fault-tolerance which can stand by
itself.

It is usually desirable to build fault-tolerance into a system at many levels. For example,
at a very detailed level of the design, we would like algorithms which store individual words
of memory in a manner which is tolerant to faults in single bits of those words. At a higher
level of abstraction, we would like algorithms which are tolerant to faults which cause the
crash of entire nodes of a distributed system. The design at the higher level will take the
fault-tolerance properties at the lower level for granted. Because fault-tolerance will occur
at many levels of design, it is likely that advanced software-specification systems will allow
designers to work at a high level of specification, largely ignoring f"ut-tolemnce algorithms,
but expecting that fault-tolerance will be built into a system automatically by a compiler
or other transformation tools. An example of this kind of specification system is ISIS [6].
Does this approach to specification remove the need for explicitly verifying fault-tolerance
properties? Perhaps so; however,
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" we will consider a system to include potentially its entire design, at every level of
detail. Therefore, we will be analyzing the fault-tolerance of algorithms built in
automatically, even though they are submerged at a very detailed level of the design;

" it is not clear that building fault-tolerance into a system automatically will give great
assurance of correctness. (Secure operating systems automatically build "security"
into the interactions among their application programs, yet this "security" is notori-
ously unreliable).

3.1.2 Fault Scenarios and MTTF

A system's fault-tolerance is often expressed as a mean time to failure (MTTF). Obviously,
a larger MTTF can be taken as an indication of a more fault-tolerant system. One goal
of a verification methodology for fault-tolerant systems might be to prove that a system's
MTTF exceeds some value.

However, the MTTF is not just a property of a computer system, but involves the
environment of that system as well. For example, increasing the flux of cosmic rays through
the computer system hardware will surely decrease its MTTF, as is found for space-borne
systems. A measure of fault-tolerance which depends only on the system design, and not
on its environment, would be preferred.

A fault scenario is a history of a system's interaction with its environment which
includes not only its inputs and outputs, but also a description of faults, including which
components failed, when they failed, and how each failure is expected to manifest itself in
the future. Even simple systems will have a large number of fault scenarios (if the time at
which a failure happens is a real number, then the number of fault scenarios will be infinite).
We may suppose that a system's environment will determine whether a particular fault
scenario happens or not. Circumstances which are (apparently) the same will sometimes
produce one fault scenario, sometimes another. Therefore, we may suppose that a system's
environment assigns probabilities to each fault scenario.

If we can now decide, for each fault scenario, whether the system design will fail, and
at what time it falls, then we can (in principle) calculate the MTTF by averaging over all
the fault scenarios:

( probability \ time until
(all fault of fault ( failure in
scenarios scenario fault scenario

This calculation, which is usually quite complicated and involves many approximations and
assumptions about the environment, will not be our concern in what follows.
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Instead of calculating MTTF, we will consider verification of fault-tolerance to be proof
that a system design will not fail for a given fault scenario or set of fault scenarios. For
example, one might verify that failure does not happen in any fault scenario in which
at most one fault occurs. This meaning of "fault-tolerance" depends only on the system
design, and is independent of environmental factors. It now remains only to give a meaning
to "failure".

3.2 Formal Specification of Fault-Tolerance

A precise definition of "fault-tolerance" can be used as a specification against which system
designs may be verified. Several distinctions should be kept in mind when formulating these
definitions.

Generally, the definition of "fault-tolerance" should be kept as abstract as possible.
There are several advantages to concentrating on specification at a more abstract level:

" A more abstract property will involve fewer (hopefully, no) details of the design.
In principle, it can be stated in advance of the design, thereby constraining system
designers only in appropriate and minimal ways. It should be possible to change a
design without needing to change its specification.

" A more abstract, higher-level property will correspond more closely to intuitive con-
ceptions of "fault-tolerance" .

Once abstract versions of the fault-tolerance property are stated, it may be possible to
derive lower-level, less abstract, properties from it. If these lower-level properties imply the
higher-level one, then it is sufficient to demonstrate that they hold for design X, and to
infer from that fact the fault-tolerance of X.

An extrinsic property of a system is one which can be defined purely in terms of external
interactions of the system, rather than in terms of internal states and state changes (i.e.,
intrinsic properties). Since an extrinsic property makes only minimal constraints on a
design, it will generally be preferable for stating abstract system properties.

3.2.1 Specifying Faults

Before defining "fault-tolerance", it is first necessary to define "fault". Abstractly, a system
or system component is faulty when it no longer performs according to its specification.
This is an extrinsic definition, given In terms of behavior: up until some time, a component
behaves according to its specification; after that time, it behaves according to another
specification.
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The literature of fault-tolerance identifies various "specifications" for components after
they have failed. These include: Byzantine (a failed component exhibits arbitrary behavior),
fail-stop (a failed component halts and its failure can be detected), and others.

In addition to characterizing faults extrinsically, it is also possible to define them at
more detailed, less abstract levels. For example, if one is willing to identify the physical
memory of a system as a certain collection of words, then one kind of fault will be that
a single bit in one of the words becomes stuck "on". This approach allows a very precise
definition of some faults in a simple manner. However, it requires that some knowledge of
the design must exist before the specification can be given. It is therefore not an extrinsic
specification.

We will use both extrinsic and intrinsic methods to characterize faults.

Some faults, although they may be characterized very easily at a detailed design level,
cause very complicated changes in behavior at a higher level. The case of the single "stuck"
bit, if that bit happens to be in a region of memory occupied by program code, can cause
very intricate changes in behavior of that program. Generally, rather than characterize
that behavior exactly at the higher level, we may conservatively choose to characterize it
as "Byzantine", or "fail-stop", etc.

3.2.2 Non-Interference

The simplest way to define "fault-tolerance" is converse to our previous definition of "fault":
a system is fault-tolerant if it meets its specification. This does not mean, however, that
a fault-tolerant system experiences no faults; on the contrary, it must behave as though it
were non-faulty, even in the presence of faulty behavior of its components, or of faults at
lower levels of abstraction.

What will it mean that a system meets its specification even in the presence of faults?
Denote by N the set of fault scenarios under which no faults occur. Let C be a set of
fault scenarios under which we desire fault-tolerance; no loss of generality will result if we
require that N g C. Suppose that D is a design of an algorithm which exhibits the behavior
desired, and that FTD is a fault-tolerant version of D. There are now three methods by
which we may show that FTD is fault-tolerant under the given set of fault scenarios, C.

1. We may show that the behavior of D, under scenarios N, is identical to the behavior
of FTD under C.

2. We may characterize the behavior of D under N by some specification, S. Then we
may show that FTD implements S under C.

3. We may show that the behavior of FTD under N is equivalent to the behavior of FTD
under C.
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The first of these methods is impractical. We would need to construct two separate
implementations for one system.

The second method is the ont used in the SIFT project. The specification S describes
the correct behavior both of D , nd of FTD. We would then require simply that FTD
behave correctly.

The third method captures the notion of fault-tolerance as a comparison of behaviors
with and without occurrences of faults. However, it does so without referring either to
design D or to its specification S. The relevant aspects of each can be derived from FTD
alone. The behavior of FTD under scenarios with no faults should be equivalent to behavior
of D under the same scenarios. Therefore, the third method has a clear advantage over the
others: the property of fault tolerance becomes entirely a property of the behavior of FTD,
and does not involve extra correctness constraints that may be required by S. It is this
third method we will proceed to develop.

Our statement of fault-tolerance is now a relation on the behavior of the system under
different sets of fault scenarios. With an aim toward defining fault-tolerance extrinsically,
we make more precise the notion of "behavior". Let the possible ways a system may interact
with its environment be called "events". Seq'uences of events will be called "histories", and
a history that is possible for a system will be called a "trace" of that system. A way to
characterize a design extrinsically is by giving the set of its traces. This is a simplification
of the approach of CSP [7]. "Behavior" wil be defined by the sequence of events of a trace
that are visible to a system's users.

Simple fault-tolerance is then: allowing certain fault scenarios does not change the
visible aspects of the set of traces of a fault-tolerant system. We may say that the occurrence
of fault events does not interfere with a system's behavior.

Formal Definition

Let a system be characterized by a tuple (E, F, 1, 0, T), where E is the set of possible events,
F C E the set of possible fault events, I C E the set of possible input events, 0 C E the set
of possible output events, and T is the set of traces of events chosen from E. We will use
the notation E" to denote the set of all sequences of events in T; then T g; E*. Events not
in I or 0 will be called internal events.

Sequences of events may be written explicitly when enclosed in angle brackets, e.g.,
(ei,e 2 ,e3). The empty trace is written ().

For any sequence h and set of events S, we will use the notation, h T S, to denote the
sequence derived from h but with all events not in S removed, and the ordering of the
remaining events retained. For any trace h, what was called "behavior" above will now be
denoted by the sequence of non-fault events, h T F, where Y = (E - F) is the complement
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of F with respect to E. Two sets of traces exhibit the same behavior if, for any trace in
one, there is a trace in the other which has the same sequence of events in F.

We choose the most straightforward way to characterize fault scenarios: as a sequence
of events. Each scenario is simply a history, whether or not it is a possible history for a
given system.

We will now formalize the above definition of fault-tolerance for the system A =
(E,F,I,O,T). Let C be the set of fault scenarios for which A is to be fault-tolerant; C
will be a subset of E*. The set of behaviors which may occur in the presence of fault
scenarios in C is

fa 138 E T, P E C and T = a}.

The set of behaviors which may occur in fault-free scenarios is

{a 130 E T, / E C and P I F = a and / F = =

{a Ia E T and a E C and a T F = 01.

Fault-tolerance as discussed above is the equivalence of these two sets.

Va E E*, (3/P E T, / E C and / TF = a)
(a E T and a E C and a I F = ()

As before, we choose C to include any scenario (sequence) under which no faults occur.
Hence,

V/3EE*,/1F = /EC.
Simplifying the above equivalence yields

(FT1) VOET,PEC -I3FET

which we take as our basic definition of fault-tolerance. It says that from any given possible
history that is also a fault scenario in C, we can construct a second possible history simply
be removing all fault events from the first. If the given history has no fault events, then
the second history is identical. This definition will be augmented in various ways in future
sections.

Example: File System

As an example, consider a fault-tolerant file system. An external user or other client of
the file system interacts with it through operations such as "read-file", "write-file", and so
on. These operations, along with any of their associated parameters and return values, will
be taken as the events from which system histories are constructed. Certain observable
behaviors, or traces, are expected, e.g., if a user writes a file and then reads the same file,
the contents returned should be the same as the contents written. So the history hi = (
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write-file 'contents', read-file 'contents' ) should be a trace, while the history h2 = (write-
file 'contents', read-file 'garbage' ) where 'contents' and 'garbage' are different, should not
be.

Fault events in the hardware supporting the file system may make various bizarre be-
haviors possible. For example, if the sequence h3 = ( write-file 'contents', fault, read-file
'garbage' ) is a trace, then the system may appear as though it ha& actually executed the
illegal history h2. If, however, the file system is to be fault-tolerant with respect to fault
scenarios including h3, then our property (FT1) demands that h3 won't exist if h2 doesn't.

Why isn't property (FT1) equivalent to requiring that the file system work correctly?
In fact, (FT1) is weaker. Suppose, for some reason, that when each Me is written, the
file system alters the contents with some arbitrary function Mod; when a file is read, the
altered contents are returned. The traces of this new file system, if it is fault-tolerant, will
include:

( write-file 'contents', read-file Mod('contents'))
(write-file 'contents', fault, read-file Mod('contents'))

and possibly many others. Like our previous file system that did not alter the content of
files, this one meets (FT1) since the alterations are made regardless of the presence of a
fault. But, if we have specified a file system that does not modify the content of files, this
implementation is incorrect even though it is fault-tolerant.

Invariants

Fault-tolerance is implemented by use of redundancy, often redundancy of state information.
Therefore, one might try to specify fault-tolerance by specifying the redundancy of state
information in the design. A design would correctly maintain the redundancy as an invariant
even in the presence of certain faults. For example, a system which uses an error-correcting
code to store a word of memory should maintain the invariant: the stored bits are in a
consistent, error-free state when the word is read. Note that the invariant does not literally
aloays hold, but holds only at certain events during processing.

Using an invariant to specify redundancy will be an important, necessary condition for
verifying higher-level fault-tolerance properties, such as (FT1), but does not substitute for
them. In the file system example, suppose that each file's content is stored redundantly in
more than two copies, that faults corrupt exactly one copy, and that the set of scenarios,
C, includes all sequences with at most one fault. Then majority voting is a fault-tolerant
algorithm satisfying (FT1). An invariant could be used instead to require that all copies be
consistent when any operation on the file is completed. Unfortunately, an algorithm that
replaced all copies with a corrupted version would also satisfy this invariant, but does not
meet (FT1).

More powerful invariants can be found that imply FT1 0. These invariants, however,
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relate not only the values of state variables but other predicates on the state machine's
history. They are often stronger conditions than FT1.

3.2.3 Analogy with Multi-Level Security

Property (FT) is often called a "non-interference" property. Non-interference properties
have been explored and used extensively in the context of multi-level computer security
(MLS) [17,21,33,64]. It is reasonable to ask, then, what is the relation between fault-
tolerance and multi-level security? We begin with a brief description of MLS.

In a secure computer system, it is desirable to prevent sensitive information from flow-
ing to users who are not authorized access to it. In military systems, the sensitivity of
information and the authorizations of users can be labeled by a partially ordered set of
levels. Highly sensitive information is brought into the system by the inputs of users of the
system with high levels of authorization. The multi-level security problem is the prevention
of information transfer from those inputs to outputs which can be seen by users who are
not so highly authorized.

The key to defining security in this way is the definition of "information flow". As
described previously, a system can be characterized extrinsically, i.e., in terms of its in-
teractions with the outside, and we may take this to mean at least the knowledge of the
possible traces of inputs and outputs. An extrinsic definition of information flow is the
ability of a particular user to use the observed behavior of the system, plus knowledge of its
possible traces, to make deductions about its unseen behavior. Information will flow from
unseen inputs to observed behavior if more can be deduced about those inputs than could
be deduced if the system's behavior were not observed.

Non-interference can be taken (loosely) to mean that high-level inputs do not interfere
with or influence processing, and hence outputs, on lower le-., Stated more precisely,
the existence of high-level inputs cannot be deduced from observing a particular history of
lower-level inputs and outputs.

An analogy between fault-tolerance and multi-level security properties can now be
drawn. A non-interference property for multi-level security can be converted to a non-
interference property for fault-tolerance by translating from "highly sensitive" inputs to
"fault events", and from "less sensitive inputs and outputs" to "non-fault events", i.e., or-
dinary system behavior. A fault-event, e.g., a failure of a processor, hardware glitch, etc, is
thus considered a type of input, although not from any user. The non-interference property
for MLS can then be translated into the language of fault-tolerance: the existence of fault
events cannot be deduced from particular histories of ordinary system behavior. We will
see that this is almost exactly the property (FT1).

The analogy can be posed in another way if we consider the work of Biba [5] in ex-
tending MLS to handle some concerns over information integrity. His work added integrity
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levels to the security levels already used for marking the sensitivity of information and the
authorizations of users. The Biba property, in effect, allows information to flow only from
inputs to outputs of the same or lower integrity level. Given this property, high-integrity
users would be prohibited from deducing (and hence from being corrupted by) information
about inputs at lower integrity levels. The analogy between fault-tolerance and MLS can
be recast in terms of integrity, in which case a fault-event is seen to be analogous to an
input of low integrity level. This becomes an appropriate analogy if we consider that fault
events are not usually a high-integrity source of information.

The analogy between fault-tolerance properties and multi-level security/integrity prop-
erties is not perfect, and breaks down in several ways.

* Unlike the inputs from users, which are the ultimate source of information in MLS
systems, fault events are not external events. Therefore, the noninterference property
for fault-tolerance cannot be truly extrinsic. The system design will be partially
constrained by specifying the set of possible faults.

* Systems are never, in practice, tolerant to all fault scenarios. Some possible sequence
of faults will cause the system to fail. This differs from the analogous multi-level
security case, in which one desires to build systems that are secure under all possible
histories of sensitive inputs. Users of an insecure system may conspire to transmit
information by concocting unusual or unlikely sequences of inputs; fault events are
assumed not to do this. Thus, the MLS analogue of the set of fault scenarios, C, is
in fact the set of all traces, T. It is the set, C, which divides the most probable fault
scenarios from those that are less likely.

Since fault-tolerance non-interference properties and MLS non-interference properties
are formally similar, can the same kinds of implementation mechanisms be used for both?
In other words, might we use access control to implement fault-tolerance? The differences
given in the previous paragraph point out why this will not work. Faults are not external
events, and therefore it is not possible for a system to decide, without further processing,
whether they are fault events or not. A fault detection mechanism may be needed. In
secure systems, however, inputs are associated with the authorization level of the user who
causes them. Thus, even though there is a formal similarity between fault-tolerance and
MLS properties, the designs used to implement them must be different.

Deducibility

We have discussed multi-level security in terms of information flow, and information flow
in terms of deducibility. The non-interference statement of fault-tolerance given previously
can also be seen as a restriction on deducibility, as we now show.

68



Suppose that an actual run of a fault-tolerant system A = (E, F, 1, 0, T) produces trace
P E T. This trace may contain fault events, i.e., events in the set F C_ E. But a user
of system A interested only in the results of normal, fault-free processing will be able to
view at most the events of the sequence P F. Since we suppose that A is fault-tolerant
according to our non-interference definition, we have

V/3ET,/3EC -+ /3TYET.

Now, if the trace / is a fault scenario for which this system is fault-tolerant, the user who
knows the set of traces, T, (i.e., the design) will be able to conclude that the sequence /P T
is also a trace. Since both are traces, the user cannot assuredly deduce that / happened
rather than / T 1. The user cannot assuredly deduce that any of the fault-events in/3
happened.

A few notes are in order concerning this form of deducibility.

1. System A may be nondeterministic, and for a given sequence of inputs to A the
possible output sequences may have different probabilities. If / T IF is an extremely
unlikely trace of A, then a user seeing this sequence of fault-free events may perhaps
conclude that trace / is almost certainly the actual behavior of the system. However,
this conclusion would not be certain. We have not analyzed this probabilistic kind of
inference.

2. We have not said whether the events of E include timing information. If they do,
then this fault-tolerance property demands that processing a trace containing faults
(and which is in the set of fault scenarios, C) takes no longer than processing the
behaviorally equivalent fault-free trace. If timing information is not included, then
this fault-tolerance property becomes much easier to satisfy, but of course deducibility
based on timing is no longer ruled out.

3. Property (FT) rules out the ability to deduce the existence of faults in a fault scenario
based on the visible behavior, but it does not rule out the ability to deduce that
particular fault scenarios did not happen. For example, the system A may produce
identical behavior under every fault scenario, except that if any fault has occurred, at
some point A will loop forever without any external Interaction. If a user of the system
now sees A terminate, he can deduce that no fault has occurred during processing.
So, our fault-tolerance property guarantees that information does not flow from fault
events to visible behavior, but it does not guarantee that that behavior is independent
of the actual fault scenario. If our formal definition of fault-tolerance is augmented
by a converse property

V/3EE,/ECand#3TECT -+PeT
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T

Figure 3.1: Relationship between the set of all histories, E*, all traces, T, of some given
system, a set of fault scenarios, C, and the set of all fault-free histories N. Arrows are
instances of the mapping TY ruled out by properties (FT1) and (FT2).

then deducibility of the non-existence of faults is prevented. After combining with
our original definition, this results in the simple form:

(FT2) VEE*,PEC -. [PET -+ PT/ ET]

In a system satisfying (FT2), the scenarios in C are divided into equivalence classes in
which every member shows the same behavior. Either every member of a class is a trace,
or none are.

The rationale fnr property (FT2) can be better seen from figure 3.1. The regions E*, T,
C, and N, represent sets of traces as defned previously. The arrows represent the mapping
from traces into traces defined by the operation T r. The downward arrow is an instance of
a trace whose faul -free behavior is impossible. This case is prevented by property (F1),
since by observing this fault-free behavior one could deduce that some faults had happened.
The upward arrow is an instance of a fault-free trace for which a particular pattern of faults
is impossible. Fot example, the pattern of faults may actually be one in which the system
crashes. This case is prevented by property (FT2).

So far, each fault-event has been thought of as a kind of input event, effectively an
element of the set 1. It may be that there are other events, possibly in the output set, 0,
which are to depend on the existence of faults. For example, an audit report for the system
may contain information about the previous history of faults. Then the production of the
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audit report would be an event in the set 0 n F, in other words, an output which contains
information about the existence of faults. If the system is designed so that audit reports are
produced regardless of whether faults have happened, then fault-tolerance property (FT1)
will not hold. A sufficient generalization of that property is:

V# E T, P E C -

37 E T, TI = T T and 7TI y F =IT .
In this generalization, we are prevented from deducing the existence of a trace containing
fault input events, but we may be able to deduce that fault output events have occurred.
Note that this fault-tolerance property reduces to (FT) in the case that F C I.

8.2.4 Graceful Degradation

Even though a system is verified as perfectly fault-tolerant under a given set of fault sce-
narios, C, we may still require more. We may also require that, for fault scenarios only
slightly worse than those found in the set C, the system will not be reduced to chaos, but
will rather behave only slightly less than perfectly. This aspect .of fault-tolerance we will
refer to as "graceful degradation".

As an example, consider a system which must perform two tasks, A and B. Suppose
that fail-stop processors A1 and A2 are dedicated to simultaneous execution of task A,
while fail-stop processors B1 and B2 are dedicated to task B. Ignoring the amounts of time
needed for processors to compare final results, this system will be perfectly fault-tolerant
for a fault scenario in which processors A1 and B1 fail: both tasks will complete, and they
will complete in the same amount of time they would have taken if no faults had occurred.
However, it will not be fault-tolerant for a fault scenario in which processor A2 fails in
addition to A1 and B1. In this case, processing of task A is interrupted, and will not be
completed unless further steps are taken. "Graceful degradation" could mean, that for any
fault scenario in which three or fewer processors fail, both tasks A and B will eventually
complete. To implement this specification will require some reconfiguration of the system:
interrupted processing of task A will have to be continued or restarted on a processor
originally dedicated to task B, or vice-versa. The processing power of the system will then
be degraded, since a single processor will take longer to complete both tasks than either one
separately, but the response to faults is graceful since at least both tasks will be finished.

Like "fault-tolerance", "graceful degradation" is quickly grasped intuitively, and it is
always a consideration in the design of fault-tolerant systems. Our goal in this section will be
to show that certain kinds of "graceful degradation" may be reduced to formal specifications,
just as certain kinds of "fault-tolerance" were. Once reduced to specifications, it is possible
to decide unambiguously whether system performance "degrades gracefully".

The problem of specifying graceful degradation will have much in common with the
previous discussion of specifying fault-tolerance. We expect that many systems will be
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fault-tolerant for some fault scenarios, gracefully degrade for others, and be chaotic for the
rest. As a result, specifications for graceful degradation may be merely modifications or
generalizations which weaken those we have already discussed for pure fault-tolerance. In
fact, the specifications we will arrive at can be seen simply as a more comprehensive way
to define fault-tolerance itself.

Classes of Fault Scenarios

In the example above, a system was perfectly fault-tolerant for any fault scenario in which
at most one task A processor and at most one task B processor failed. Denote this set by
C, as usual. It is gracefully degraded in a larger set of scenarios, C1, in which at most
3 processors fail. A complete specification for this case would be the conjunction of two
conditions: if a system's history is in C, then fault-tolerance; if it is in C1, then a weaker
condition holds.

In general, we will divide the fault scenarios into classes and treat each class separately.
Let each of C1, ... , Cn be a set of fault scenarios. For any i, C _ C. Specification FT will
hold under C. We will find weaker forms of fault-tolerance, GD 1, ... , GD., that will hold
in each class C separately. For any i, FT -+ GDi. Our complete specification is then a
conjunction

VhET, hEC -- FTand

h E C1 -* GD1 and

hECk -. GDn.

Limited Interference

If fault-tolerance is to be expressed as a non-interference property, as discussed in section
3.2.2, then graceful degradation may be expressible as some limited interference of faults
with external behavior. A specification of limited interference should be a generalization of
a specification for non-interference. The form of the specification must then show the way
in which interference of fault events with normal behavior is limited.

When we developed property (FT1), we required that system behavior with and without
faults be identical. This prevents deducibility that any faults have occurred. Unlike the
MLS case, though, it may not be a problem that one can deduce the existence of faults, so
long as the system behavior in response to those faults is "good enough". Thus, we need
not demand that behaviors be identical, but only that they be acceptably equivalent. If a
and P are behaviors (sequences in which no fault events occur) then let a =_ mean that
the two behaviors are acceptably similar. The relation '.-', called the tolerance relation,
will be an equivalence relation on behaviors.
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Adding fault scenarios to a system satifying (FT) will not enlarge the set of behaviors.
We now want a second property, (FT2), such that adding fault scenarios will not enlarge
the set of possible equivalence classes of behaviors, where a "possible equivalence class" is
one that contains at least one possible behavior. Repeating the analysis that led to (FT1),
but demanding only equivalent instead of identical behavior, we find that

(FT3) VE T, 3ECi - 37ET,71TF=O and-t= fi 1

is the generalized fault-tolerance, or graceful degradation, property that results. This prop-
erty says: for any fault scenario, we must be able to find an alternate possible history that
is fault-free and is acceptably equivalent. Note that (FT3) reduces to (FT1) in the case
that the tolerance relation is equality (and that Ci is C).

If # is the system's actual history, then behavior P Y is observed. If the behavior is not
itself a trace, an observer can deduce that faults have occurred. However, if the observer
could not distinguish the behavior y from P T F, then, just as for (FT1), the existence of
faults could not be deduced.

It is the choice of tolerance relation that determines how faults interfere with behavior. A
special case occurs when the tolerance relation is used to ignore certain events. For example,
it may be that the observable, non-fault events possible for a system can be associated with
different tasks the system is designed to accomplish. Let the tasks have different priorities,
so that under fault scenarios in set C1, the system degrades gracefully by completing just
the high priority tasks and abandoning the low priority ones. Let L1 be the set of events
associated with the lower-priority tasks. Then L1 C (E - F) = r, where E is the complete
set of events and F is the set of fault events. "Graceful degradation" for this system can
be stated as (FT3), in which the tolerance relation satisfies a _ P -+ a " L1 = 0 T L1 and

=i (E - LI). In other words, we require limited interference in which events in set L1 are
ignored.

It is possible that a larger set, C2, of more severe fault scenarios would result in a larger
set of tasks being dropped. (FT3) could then be Used with a tolerance relation ignoring L2,
a larger set of events. In general, Li could be determined as a function of C.

This form of limited interference can be viewed in terms of the analogy with multi-level
security. Each event in set Li may carry information about the existence of unseen fault
events, and is analogous to events in secure systems that leak some information from high
security levels to lower ones. In the language of secure systems, these are "downgrading"
events, and the systems that produce them are not perfectly secure. A downgrading event
may occur either in an explicit downgrading operation, or in a covert channel which leaks
information about higher-level processing, and which cannot be avoided due to other design
requirements. A secure system with downgrading events will not leak information from
higher levels if the downgrading events are not used to make deductions about higher-level
processing. However, the analogy ends here. In a secure system, the fact that downgrading
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events exist can often be manipulated to transmit arbitrary amounts of information to lower
levels. This is not a concern in fault-tolerance, since the occurence of falt events is not
maliciously manipulated.

Example: Timing

A special case of graceful degradation is a decrease in real-time responsiveness, or through-
put. In this case, faults in a system history will interfere with visible behavior, but the
interference may only be observed through changes in the timing of visible events. The
example given at the beginning of this section is one such case: reconfiguration allows the
system to complete the processing of all its tasks eventually, but final completion may take
longer if some processors have failed. The actual sequence of visible events will remain
unchanged under a fault scenario containing fault events, but due to the special processing
needed to hide the effects of the faults, processing is slowed down, and some visible events
occur later.

The simplest way to handle this kind of graceful degradation is to ignore it. Our previous
definitions of fault-tolerance made no explicit mention of timing. If we suppose that timing
information is not present in traces, then property (FT1) is sufficient. However, it fails to
specify the property of graceful degradation.

There are at least two ways to add timing information to traces.

1. Make each event a pair, (action, time). The first component records which operation
was performed at the event; the second records the real-time at which it occurred.
The time-components of events in a trace are required.to be non-decreasing, i.e., if
event B follows event A in a trace, then B's time component is at least as great as
A's.

2. Do not directly associate times with each event, but instead add explicit clock ticks
as events. The type of each tick event tells how much real-time has passed since the
last tick. A lower bound on the time taken by a trace is the sum of the time intervals
represented by clock ticks in the trace.

These methods for including timing are interconvertable. Given a sequence of events includ-
ing real-time components, the appropriate number of clock tick events may be interleaved.
Given a sequence of events including clock ticks, the ticks may be removed if the intervals
they represent are summed and attached as real-time components to non-tick events; the
uncertainty in the real-time components depends on the density of tick events.

We will work with the second method, since it involves less alteration of our previous
trace description. For a system A = (E,F,I, O,T), let the clock tick events be drawn from
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a set r C E. A history, a, with timing information can then be converted to one without:
a Y. We suppose that the set r is disjoint from each of F, I, and 0.

Suppose that system A is fault-tolerant under fault scenarios C, but its throughput will
be degraded under the scenarios in set C1 - C. C1 may be parameterized by 6, i.e., let C,
be a function which maps a real number into a set of fault scenarios. The parameter 6 can
be thought of as the 'severity' of a particular collection of fault, scenarios: the greater the
severity, the greater the damage to throughput. One way to limit the damage is to require:

VP ET,i0ECi(6) -

3-yET,7T1 F=Oand-1.T = P TT and

,wITY, ) < 6
The function A compares two traces for timing differences and returns a positive real
number. This property requires that for any actual system trace, there is a trace with
no fault inputs, which shows equivalent visible behavior if timing events are ignored, and
whose timing difference from the actual trace is bounded in some way by the parameter
6. It is a special case of (FT3), in which the tolerance relation is a = 6 4-+ a TY = 0 T
Fand A(a,b) 6.

This property should reduce to (FT1) as a special case. So if 6 = 0, then let CI(6) = C.
Also, A(t 1 ,t 2 ) = 0 if and only if ti = t 2.

The function A may take various forms. Assuming that every clock tick event records
the same interval of time, then a simple form for A which compares the total real-time
taken by alternate traces is:

A(tbt 2 ) = j length(t 1 T r) - length(t 2 T r) I
With this A, our graceful degradation property stated above limits how much longer a faulty
trace may take than would the slowest equivalent fault-free trace. Other, more complicated
forms for A are possible. For example, the above A might be normalized by dividing by one
of the lengths; it would then limit the fractional degradation in processing time. Instead,
it might limit only the difference in processing times taken by the last task completed, or
the difference in average times taken to complete all tasks so far. In general, A will express
bounds on real-time which are system-specific.

Deducibility

Is there a noninterference property which strengthens the non-deducibility aspects of (FT3)
in the same way that (FT2) strengthens (FT1)?

Let EqScen be an equivalence relation on fault scenarios such that two scenarios are
equivalent if they exhibit the same "pattern" of faults. Naturally, there is more than one
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choice for EqScen, depending on the degree of detail in which a "pattern" of faults is
described. Consider

(FT4) V8 E T,/ E C -T
Va E E*, a E C andatF=/TF -at

37 ET, 7 t TS and EqScen(7, a).

This property requires for any possible fault scenario, P, and any pittern of faults, repre-
sented by the sequence a, that there must be a trace, 7, which both has that pattern of
faults and behaves equivalently to fi. Therefore, observing behavior 0 I does not allow
any pattern to be ruled out.

A simple choice for EqScen considers two scenarios as equivalent merely if they produce
the same fault events in the same order, i.e., EqScen(a, fl) 4-+ a T F = T F. With this
choice, (FT4) implies (FT3) (since a can be taken to be " T I). However, this choice retains
so little information about the "pattern" of faults in a history that (FT3) implies (FT4) as
well (since a 7 can be constructed by placing all required fault events at the end of a trace).

A much more discriminating choice for EqScen considers two scenarios as equivalent if
exactly the same faults appear in corresponding places in both. In other words, the nth
event of one scenario is a fault if and only if the nth event of the other is the same fault
event. With this choice, and replacing the tolerance relation by equality, property (FT4)
reduces to (FT2).

Example: Agreement

As another example in which one may want to achieve fault-tolerance but does not expect
to hide the existence of faults, consider algorithms for agreement. Consider a collection
of processes, Al, ... , A., each designed to choose a single value initially. The choices axe
events of the form vij, where i tells which process and j tells which value. The processes
communicate with each other via a set of events, X; they terminate by outputing events of
the form olik, each of which is a claim by process Ai that process Bj chose value k initially.
Their goal is to arrive at agreement on the correct values chosen by each of the others.
However, each process Al is subject to a possible fault event f1, which alters its behavior in
some way. What is fault-tolerance in this situation?

If the faults are Byzantine, the problem of finding an algorithm by which all non-faulty
processes can agree is Byzantine agreement [30]. Define a predicate, 'Agree', whose domain
is the set of histories. 'Agree' holds when applied to h if:

For any processes Ai and Aj, if neither fj nor fj appears in h (neither has failed),

then exactly one Oiki and OJkm occurs for every value of k (both have terminated),

olki occurs if and only if ojki does (agreement), and ojIk occurs if and only if vik
does (correct value).
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Define

(FT4mod) VIET,IPEC--
Va E Ea E C andaT=F TF-

37 E T, Agree(7) +- Agree(#) and
EqScen(-y, a).

The property (FT4mod) guarantees at least: if the processes come to agreement when
there are no fault events, then they can come to agreement when there are. If one looks
only for agreement or disagreement and not at the actual outputs of the processes or the
communications between them, then one cannot eliminate any pattern of faults in the set
of fault scenarios, C. (FT4mod), however, is not equivalent to Byzantine agreement; it
becomes so only if it is also known that the processes will come to agreement when there
are no faults.

(FT4mod) cannot be placed in the form of (FT4) by a choice of tolerance relation
because the definition of 'Agree' is not extrinsic: 'Agree' uses the presence of faults in a
history to determine whether a given process has failed. It does not depend purely on
behavior. This is the definition used in (30]. Other, extrinsic, definitions of agreement may
be possible.

3.3 Verification of Fault-Tolerance

We have argued that non-interference specifications can be used to capture the intuitive
notion of fault-tolerance. How can a system be verified, in practice, to implement this sort
of specification correctly?

First, the constructs of "event" and "trace" that appear in the definition must be
related to features of the implementation. One may then appeal directly to the definition
in constructing a proof. However, for all but the simplest system, this approach becomes
very complicated.

Many of existing verification tools [56,19] provide little help either. Typically, these are
designed for proof of invariants, or more generally, of embedded aasertion. conditions that
hold at a particular point in an execution history. Unfortunately, an embedded assertion
expresses a condition that applies to each history independently, whereas a non-interference
specification applies to the entire set of possible histories at once. The help provided by
these tools is not sufficient.

Because fault-tolerance specifications are formally similar to specifications for multi-
level security, this same problem occurs in the verification of MLS. We know of no general
solution. In that domain, however, specialized techniques can be applied to analyze special
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cases. For example, the technique of [65] is one in which the existence of some traces is
shown by modifying others in appropriate ways. Demonstrating the existence of one trace,
given another trace, is exactly what is needed in each of the fault tolerance properties
considered in previous sections. This technique can in fact be applied either to designs in
the MLS or fault-tolerance domains.

3.3.1 Modeling Fault Tolerance in MUSE

We now consider an example of fault-tolerance verification in the context of a particular
set of tools.

The MUSE verification environment [22] has been developed at SYTEK as a successor
to the Hierarchical Development Methodology (HDM) [56]. In this section we will identify
some changes to the MUSE environment that would be needed to support efficient vrifica-
tion of fault-tolerance, defined in previous sections in terms of non-interference. Familiarity
with HDM or MUSE is assumed. We make no claim that this list of potential changes is
complete.

MUSE and HDM are both languages for describing state machines. For the most part,
the conclusions we reach in this section will apply generally to other state-machine descrip-
tion languages as well.

Modeling Faults

Section 3.2.1 described two ways to model faults in a specification language:

1. as changes to the state of system components

2. as changes in the behavior of system components

The first of these is useful for modeling changes to data structures; the second of these is
the more general, and can be used to model aberrant behavior of algorithms as well. Can
these methods for modeling faults be used in MUSE?

It is easy to model in MUSE changes to the state of system components: this is what
the precursor to MUSE, HDM, was originally designed to do. Faults which cause changes
to data structures can be modeled simply by adding new OFUNs which modify the VFUNs
representing those data structures. Because OFUNs can describe non-deterministic state
changes, it will often be possible to describe a large class of faults using a single OFUN. For
example, any singe-bit fault in the data in a region of computer memory can be modeled
as an OFUN which is an exclusive-or of possible changes to individua! bits.
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A set of fault scenarios, restricting the possible histories of faults under consideration,
can be modeled in MUSE simply as a precondition on each OFUN describing state changes
due to faults. MUSE does not give an explicit facility for describing an OFUN's precondi-
tions; however, the preconditions can always be built into the OFUN's EFFECT.

Faults which are described as changes in the behavior of a component cannot be modeled
simply in MUSE. Consider a module consisting of a collectiou of VFUNs, OFUNs, and
OVFUNs. The collection of 0- and OVFUNs is in effect an abstract description of an
algorithm for interacting with other modules, via invocations of 0- and OVFUNs, via
values returned by OVFUNs, and via VFUNs shared with external modules. Changes to
that algorithm which are caused by faults at less abstract levels, e.g., in the hardware
executing the algorithm, are not easily described in MUSE. Instead, we may conservatively
describe the effect of such a low-level fault by specifying that the module's behavior changes:
by halting, for example, or by becoming Byzantine. So the module's behavior appears in
two phases: a normal phase, followed optionally by a faulty phase. This phase change can
be modeled in MUSE by building the possibility of both phases into each 0- and OVFUN;
this method is clumsy at best. 0- and OVFUNs can grow quite complicated just describing
normal processing, let alone the possibility of faulty behavior.

A description of a module's behavior in terms of traces offers a better alternative.
Normal behavior can be described as one set of traces, N, while faulty behavior is described
in terms of another set, F. The complete description of the module is then a set of traces
each of the form n^(e)^f, where n E N, and f E F, and e is a fault event. This decomposes
the problem naturally into a separate description of each phase.

Specifying a set of traces which includes all those which are possible behaviors of a
module and no others can become very involved in any but the simplest cases. Several
points should be noted.

9 Characterizing faulty behavior is usually not an exact science. Often, the set of traces
is quite simple, e.g., a Byzantine-faulty process exhibits all traces.

* It will often be sufficient to give properties of the set of traces, rather than characterize
it exactly.

* Ideally, the normal behavior can be described as a state machine, while the faulty
behavior is described as a set of traces. This requires a hybrid specification language.

A MUSE environment which allows modules to be described cither as non-deterministic
state machines, as currently, or instead as sets of possible behaviors, would be ideal for
modeling faults. Modules which are described using both methods would require verification
that the two descriptions were consistent. Interactions between modules written using the
two different methods would need a common language for their interface.
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Modeling Replication

Replicating of data structures and algorithms forms a key component of the fault-tolerance
toolkit. How does MUSE support specification of designs with replication?

Replication of data structures is easily modeled in MUSE. Any VFUN can be replicated
simply by adding to it another parameter which varies over the various copies of the VFUN.
For example, the parameter may be simply an integer, a host type, a process name type,
etc.

Replication of algorithms and modules is also accomplished by adding parameters to
OFUNs and OVFUNs.

Top-level Verification

The approach taken to verifying the top-level of a MUSE specification of a fault-tolerant
system will depend on the sort of fault-tolerance property to be proved. We distinguish the
various cases considered earlier in this chapter.

If it is simply required that the design expressed in MUSE satisfy its specification even in
the presence of fault scenarios, then the MUSE methodology will certainly not be adequate
for all cases, since there is an unlimited variety of specifications possible. This drawback is
suffered by any verification system.

If it is required that at certain times during system processing the system state satify
an invariant, then MUSE is well suited to the task. The OFUNs and OVFUNs must be
structured so that the times at which the invariant is to hold are the points after the
invocation of one 0- or OVFUN and before the invocation of the next. Then it is sufficient
to verify a MUSE ASSERTION.

If it is required that a module satisfy a non-interference property, then MUSE is not
necessarily adequate for the task of verification. Suppose that a VFUN, h, of type history
is used to record any and all information about module invocations and changes to the
module's V FUNS. Then the value of every VFUN can be expressed as a function of h. Also
suppose that the set of histories possible for this module is H. Then any property which
can be stated as a MUSE ASSERTION for the module is of the form:

Yh E history, h E H -- ASSERTION(h)

since the ASSERTION need be demonstrated only for histories which are possible. Note
that the ASSERTION is not a function of H, the set of possible histories. H is characterized
in MUSE via the set of 0- and OVFUNs themselves, and although it may be possible
to characterize H in other ways, (perhaps by defining a CONSTANT which could be a
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parameter to the ASSERTION), this second characterization would then need to be shown
equivalent to the set of histories possible for the 0- and OVFUNs.

However, every non-interference property mentioned in this chapter is effectively of the
above form with an ASSERTION which is a function of H:

Vh E history, h E H -+
3h' E history, h' E H and P(h, h')

where P is a relation between pairs of histories. Therefore, to state non-interference as a
MUSE ASSERTION, H must be explicitly characterized within the ASSERTION. Except
in the very simplest cases, this will be hopelessly complicated.

The problem above is simply that non-interference properties involve a relation between
two different module histories, whereas the ASSERTION mechanism is designed to handle
only one at a time. Two solutions have been proposed:

1. The non-interference property can be inferred from other, sufficient conditions which
are more easily stated as an ASSERTION. The unwinding theorems of Gogen and
Meseguer [18], and of Rushby [45], are examples of this sort of inference in the multi-
level security domain. Whether these results can be generalized to other forms of
non-interference, including the ones discussed in this chapter, is not clear.

2. Several histories of a module's behavior can be generated simultaneously under dif-
fering assumptions about inputs, and the behavior compared. As an example for
fault-tolerance: a trace which includes faults, and one which doesn't, can be gener-
ated simultaneously from the module's specification, and the externally-visible parts
of the two behaviors required to be identical. This solution will require a different
method for generating verification conditions than now exists in MUSE. A method to
generate such verification conditions for MLS non-interference properties in Gypsy is
shown in the SDOS project [65]. This method is the basis for the example worked
out in the next section. However, it can be applied only to a particular class of de-
signs, and only to the simplest forms of non-interference specifications. Whether the
method can be generalized is also not clear.

3.3.2 Example

In this section, we give an example of a simple fault-tolerant design, give formal specifi-
cations for that design which illustrate some of the fault-tolerance properties discussed in
earlier sections, and present informal arguments showing why these specifications should be
provable. In order to relate this example to the previous section, we present the design and
its formal specifications in a MUSE- or HDM-like language. (The syntax used is a hybrid
of MUSE and HDM. It probably can't be parsed by any existing verification tools.)
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The design is a module which implements the storage of a single computer word, and
uses triple redundancy to implement fault-tolerance. The normal functionality of this design
should allow an external user to interact with the module by reading and writing the
computer word in the normal fashion. However, the computer word is purely an abstraction,
since the data contained in that word cannot necessarily be found in any particular part of
the module's internal state. Instead, three words are used internally to redundantly store
the abstract word. The design is fault-tolerant for any fault scenario which creates errors
in at most one internal word at a time, and which has at most one fault occurring between
any pair of read or write operations. At each 'write' operation, the contents of the three
words are made consistent, and at each 'read' operation, if two or more internal words
agree, then the agreed-upon value is output and the third word is made consistent with the
others. Therefore, every 'read' or 'write' compensates for the possibility of a single fault.
The performance of the design degrades ungracefully for fault scenarios worse than the ones
described above.

The MUSE description of this design follows. In the design, a single type declaration
is necessary for the (unspecified) DESIGNATOR type 'word'. The internal state of the
module actually consists of three words, VFUNs 'wi', 'w2', and 'w3', which are intended
to hold redundant data. There are two potentially state-changing operations: an OFUN
'write', which stores data into the abstract computer word, and an OVFUN 'read', which
returns the data stored in the abstract word.

MODULE triple
TYPES

word: DESIGNATOR;

FUNCTIONS
VFUN w10 -> word w;

HIDDEN;
VFUN w2() -> word w;

HIDDEN;
VFUN .30- word w;

HIDDEN;

OFUN write(word value);
EFFECTS

'wO a value;
'w2() a value;
'w30 a value;

OVFUN read() ->word w;
EFFECTS
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IF W1C) - w2()
THEN v a iC) AND 'v30 vi)

ELSE IF w1C) a w30
THEN a w10 AND 'w20 a W10

ELSE IF w20 -' w3 0
THEN w = w20 AND '110 a w20

ELSE w = w10;
D-MODULE

To this design we must add a description of the possible faults. These will be included
in a separate OFUN 'fault'. This new OFUN non-deterministically chooses one of the three
internal words, and makes an arbitrary change to its value. We will permit OFUN 'fault'
to occur, however, only if it fits into one of the fault scenarios for which this design is
fault-tolerant. The restriction on when 'fault' may occur is expressed as an EXCEPTION
'not-in.fault.scenario'. Any ASSERTIONs which are proved will be contingent on the
history of the system falling in the set of fault scenarios described this way.

Expressing that no more than one fault will occur between and pair of reads and writes
requires that we record some properties of the system history. The 0- and OVFUNs, along
with their parameters or values returned, are taken to be the events of this history, and
types 'event' and 'history' are declared. The actual system history is maintained in VFUN
'hist', and each 0- and OVFUN is modified to record its own occurrence in 'hist'. The
property which defines the possible set of fault scenarios is then expressed in terms of 'hist'
as the EXCEPTION to 'fault'.

Having made these modifications, an invariant ASSERTION can be stated. This AS-
SERTION shows that the three internal words are maintained consistent at each non-fault
event. (Further invariant ASSERTIONs will need to be supplied to prove this specification;
we have not shown these.)

MODULE triple
TYPES

word: DESIGNATOR;
eventtype: {read, write, fault};
event: STRUCT.OF(oventtype operation; word parameter);
history: SEQUENCE.OF event;

ASSERTIONS
(histO - NULL AND
LAST(hin-t().operation -- fault) =>

w10 - w2) AND w20 -130 );
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FUNCTIONS
VFUN wiO -> word w;

HIDDEN;
VFUN w2() -> word w;

HIDDEN;
INITIALLY w a w10;

VFUN w30 -> word w;
HIDDEN;
INITIALLY w aw10;

VFUN hist() -> history h;
HIDDEN;
INITIALLY h a NULL;

OFUN write(word value);
EFFECTS

'w) - value;
' w20 a value;
'w3() a value;

'hist() a JOIN(histO,
SEQUENCE( STRUCT(operation:write, paraeter:value) ));

OVFUN readO -> word w;
EFFECTS

IF wl() w2()
THEN w w10 AND 'w30 - w()

ELSE IF w10 - w30
THEN w a 310 AND 'w2() a w1()

ELSE IF w2() a w3(0
THEN w - w20 AND 'wiC) a v20

ELSE w - w1);

'histO a JOIN(histO,
SEQUENCE( STRUCT(operation:read, paraueter:) ));

OFUN faulto;
EXCEPTIONS

notjin.fault.scenario:
his() m NULL AND
LAST(hiut).operation f tault;
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EFFECTS
('v1() a Iv() AND 'w20 * v2() AND ',0() a v3)) OR
('vl() - wl() AND 'w2() - 'v2() AND '30 - w3)) OR
('v1C - Wi() AND 'w20 v2) AeD 'vAND 1 - '3());

'histO a JOIN(histO,
SEQUENCE( STRUCT(operation: fault, parameter: ?) ));

END -MODULE

Knowing that the internal state is consistent is not sufficient to show fault-tolerance,
however. For example, rather than use majority voting within OFUN 'read' to determine
which value becomes accepted, we could have chosen the minority value instead. The
ASSERTION would still hold, but the design would not be fault-tolerant.

Let us show that the basic non-interference property of section 3.2.2 holds for this design.
To do this, we must show that for any history represented by 'hist', there is another, fault-
free history which has the same history of reads and writes as does 'hist'. Since there is
no predefined way to refer to alternate histories in MUSE, we will show that the required
fault-free history exists by constructing it.

Every VFUN, including 'hist', is implicitly a function of the abstract state. We could
explicitly show this dependence on the abstract state by adding 'state' as a parameter to
each VFUN definition. However, since only two histories must be compared, we will simply
duplicate every VFUN. This has been done in the following MUSE module: for every
VFUN of the previous specification, there is a duplicate with the suffix '.alt'. 'hist.alt' is
then the alternate, fault-free, history. In the OVFUN 'read', the return value has also been
duplicated, since values returned need not be the same in the actual history and in the
alternate history.

In the alternate history, we retain the effects of inputs and outputs represented by the
0- and OVFUNs 'write' and 'read'. Therefore, the actions of these functions are duplicated
on the '.alt' VFUNs, and on their return values. We are trying to construct an alternate
fault-free history, so the action of the 'fault' OFUN is not duplicated on the '.alt' VFUNs.

To show fault-tolerance, expressed as non-interference, for this design, it is sufficient
if the alternate fault-free trace produced by this duplicated specification shows behavior
equivalent to the actual history. The defined function, 'fault-free', removes from a trace all
fault events, and leaves all non-fault events intact, including their order and their parame-

ters. Therefore, it is sufficient for non-interference if we prove an ASSERTION which states
*that the alternate history equals 'fault-free' applied to the actual history. The externally

visible history of reads and writes for the two histories will then be the same.

As in the case of the consistency invariant, other supporting ASSERTIONs must be
proved in order that the equivalence of histories can be proved. For example, the majority
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value of the word VFUNs in the fault history must be shown to equal the value of all word
VFUNs in the fault-free history.

MODULE triple
TYPES

word: DESIGNATOR;
eventtype: fread, write, fault};
event: STRUCT.OF(eventtype operation; word parameter);
history: SEQUENCE.OF event;

DEFINITIONS
history fault.free(history h) IS

IF h a NULL THEN NULL
ELSE IF LAST(h).operation a fault THEN fault.free(NONLAST(h))
ELSE JOIN( fault.free(NONLAST(h)), LAST(h) );

ASSERTIONS
hist() -= NULL AND
LAST(histO).operation -- fault => ( wi0 - w20 AND w20 - w30 );

hit .. altO() fault-.fre( histo) );

FUNCTIONS
VFUN 1O -> word w;

HIDDEN;
VFUN wl.altO -> word w;

HIDDEN;
VFUN w20 -> word w;

HIDDEN;
INITIALLY w - w1O;

VFUN v2.altO -' word w;
HIDDEN;
INITIALLY w a wi.altO;

VFUN w3() -> word w;
HIDDEN;
INITIALLY w a w1(;

VFU w3.alt() - word w;
HIDDEN;
INITIALLY w wi-.alto;

VFUN read..altO() -> word w;
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VFUN hist() -> history h;
HIDDEN;
INITIALLY h - NULL;

VFUI hiut..alt() -> history h;
HIDDEN;
INITIALLY h - NULL;

OFUN write~iord value);
EFFECTS

'ho( a value;
'v1..alt() - value;
"w2) a value;
'w2..alt() a value;
1 0(0 a value;
'v3..alt() a value;

'histO a JOIN~histO,
SEQUENCE( STRUCT~operationm:rite, parameter: value)))

'hist..alt() m JOIN(hist-.alt0,
SEQUENCE( STRWCT~operationmrite, paraneter:value)))

OVFUN read() -> word w;
EFFECTS

IF ilO - u2()
THEN w - wlO AND 'w30 a wiC)

ELSE IF w10 a W30
THEN w - iO AND 'w20 - wtO

ELSE IF w20 - w30
THEN w a w20 AND 'hIO - w2C

ELSE w - w10;

IF w1..alt() a w2.alt()
THEN read-w-.alt - wl-.alt() AND 'v3..alt() - vl..alt()

ELSE IF vl-.alt() - w3..alt()
THEN read..w.alt a wl..altC) AND 'w2.altO m i..alt()

ELSE IF w2.alt() - w3..alt()
THEN read-.w..alt - v2..alt() AND 'll-alt() - w2-.alt()

ELSE read.w.alt a v1.-alt0;

'histO a JOIN~histo,
SEQUENCE( STRUCT (operation: read, parametermw)))
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'hint.altO - JOIN(hist.altO,
SEQUENCE( STRUCT(operation:road, pa *ter:road.w.altO) ));

OFUN faulcO ;
EXCEPTIONS

not- .in.fault-.scenario:

hist() -a NULL AND
LAST(hist().operation a fault;

EFFECTS
('vI0 a 'wI) AND 'w2() -. 20 AND 'v3() - .30) OR
&V1() - v1) AND '.20 1 '.20 AND '.30 a v30) OR
('vi0 - .10 AND '.20 W).2 AND 'w3 - '130);

'histO - JOIN(histO,
SEQUENCE( STRUCT(operation: fault, parameter: ?) ));

ENDODULE

This method of duplicating VFUNs to produce an alternate history is sufficient to show
non-interference in cases such as this one. However, not every design satisfying a non-
interference fault-tolerance property can be verified in this way.

It should also be obvious that a significant part of the final specification is devoted to
artifacts needed in constructing the alternate history. The example is simple, but gener-
ating a provable specification in this way is not. However, the transformation from our
first description of the design in MUSE, to our final description of alternative histories, is
straightforward and can certainly be automated.
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Chapter 4

Conclusion

This study has examined several aspects of the specification and verification of distributed
systems, especially in those areas where these systems differ from traditional sequential
systems. A distributed system has been viewed as a collection of objects, or processes, that
execute concurrently and only interact through messages. The lack of a global memory
is necessary for systems with components that are geographically separated, but it can
also be used for tightly-coupled systems. Synchronous communication is assumed, but
asynchronous communication can be modeled by introducing the communication medium
as a component of the system in which the form of buffering is described.

Several different categories of properties that comprise requirements for distributed
computer systems have been examined. These are Security (including policies that are
adaptive), Progress, Nondeterminism, Real-time Performance, and Fault Tolerance. Proof
techniques have been given for security, progress properties, and fault tolerance. Real-
time properties have been discussed, but their proof is still a research topic. The effect of
nondeterminism on the other properties has been described. Other than the requirement
that the process scheduler be fair and that it not be a source for information flow, there
is nothing to be proven here. A collection of techniques for providing fault tolerance was
given. The state-machine approach is especially appropriate for a system of communicating
objects.

Formalisms that permit specifying program properties in such a way that verification
can be performed have also been examined. Both safety and liveness properties can be
specified in the state-transition model augmented witb temporal logic. Therefore, this
model is appropriate for security and progress properties. It can also be used to express the
fairness assumption for the scheduler. It is not capable of handling real-time requirements,
however. For this purpose it must be extended, possibly using the methods from the timed-
CSP model.
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4.1 Security

A definition of security and a method for proving that a system is secure has been given.
Part of the definition is the requirement that security be compositional. This means that
security proofs only need to be carried out for the individual objects that make up a system,
rather than for the system as a whole. It also means that secure components can be added
or removed without affecting the proof for the rest of the system.

The synchronous communication used in this report required the security proofs to con-
sider the transmission of a message as two events. In a distributed system, however, many
of the message transmissions between components will be asynchronous, with buffering
occurring either in the transmission medium or at the receiver. In these cases, the com-
ponents interact synchronously with the communication system and the communication
system also forms a component of the system and should be proven secure. In particular,
it should be shown to deliver messages to the right objects, to label the messages with the
correct security level, and not to alter the contents of messages.

A concern for security proofs is whether or not a system can be designed that is secure.
There may be a few objects that are not secure. These are known as the trusted objects
of the system. An insecure event must be ignored to prove such objects. The occurrence
of such events is monitored and an argument made that the rate at which information can
flow from these events is so slow that they do not pose a security risk.

Any schedulers that arbitrate among nondetermiistic choices must be trusted. Nor-
mally, these schedulers should not receive any classified information on which to base their
scheduling decisions. An exception is the use of scheduling priorities and time requirements
in a real-time system. Such schedulers must be shown not to leak any of this information.

4.2 Secure Distributed System Developer's Workbench

The project of which this study was to have been a part was going to build a prototype
workbench using existing tools and then to design a production-quality workbench for use in
developing secure distributed systems. Such a prototype should include the state-transition
model for verifying specifications about the systems being built. A system in this model is
a collection of communicating state machines, each of which is defined as a set of states, a
set of transitions, and an initial condition. If the state machine is not coupled to a secure
buffer, its input transitions must always be enabled and an acknowledgement is returned
when they are acted on. The states include control predicates. Several recommendations
for a prototype workbench are:

e Research remains to be done on the verification of real-time requirements. Therefore,
the prototype should not attempt to deal with these requirements.
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e Temporal logic is desirable for specifying safety and liveness properties. The temporal
operators provided should be supported by the verifier.

* Research remains to be done on the verification of fault tolerance and therefore the
verifier should not specifically support such verification. However, the prototype
can deliver a specified level of fault tolerance by automatically replicating objects as
needed, using the state-machine approach to coordinate the copies.

* Synchronized docks should be provided by the system for each object. These are
needed to generate message identifiers and also in making choices required in a real-
time environment.
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Appendix A

Notation

A.1 Sequences

Sequences are represented as follows:

( ils the empty sequence.

* (a, b, c) is a three-element sequence. (x) is a sequence with one element.

Ss't is the concatenation of sequences a and t.

t S is the sequence formed from t by removing any elements that are not in set S.

9 Isl is the length of sequence s.

* s : t is a proposition stating that s is a prefix of t. That is, there is a sequence s'
such that t = s's I.

A.2 CSP

Processes will be described using the programming notation of CSP [23]. This notation has
been extensively studied and a formal semantics has been deveJoped for it [7,9] from which
the sets E and T can be produced. Methods for proving properties of CSP programs have
been suggested [29,47]. If an existing specification language was used instead, it would have
to be modified and semantics would have to be developed for it.

The CSP notation that will be used in this study is as follows:
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STOP is the deadlocked process

SKIP is the process that terminates successfully

e -* P is the process that performs event e and then acts like process P

P;Q is the process that acts like process P until it becomes SKIP and then acts like process
Q

P 0 Q is the process that acts either like P or like Q

PIIQ indicates that processes P and Q should execute concurrently. Any channel that the
two have in common is used only to communicate with each other. (In terms of the
semantics given in [7], ignoring operators are assumed to be used.)

P I Q is like PJIQ, except that there is no communication between the processes.

P\S acts like process P, except that any events contained in set S are concealed.

f(P) acts like process P, except that all events are renamed as specified by f.

pp.P is a recursively defined process.

P b * Q acts like process P if b is true or like process Q otherwise.

Communication events will be expressed as c!v for the sending of value v on channel c, and
c?x to define x to be the value received on channel c. Most processes will input from channel
in and output to channel out. These events will be abbreviated as ?x and !v respectively.

Process names could have been used for communication instead of channels. However,
using channels permits greater flexibility in that several processes may send to or receive
from a channel. If a single process can receive from a channel, the channel acts like a
variable name for that process.
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